Вторичная структура белка. Типы связей, обеспечивающие ее стабильность. Какие формы этой структуры наиболее распространены в нативных белках? Строение и уровни структурной организации белков Вторичная структура белка отражает

Вторичная структура представляет собой способ укладки полипептидной цепи в упорядоченную структуру благодаря образованию водородных связей между пептидными группами одной цепи или смежными полипептидными цепями. По конфигурации вторичные структуры делятся на спиральные (α-спираль) и слоисто-складчатые (β-структура и кросс-β-форма).

α-Спираль . Это разновидность вторичной структуры белка, имеющая вид регулярной спирали, образующейся благодаря межпептидным водородным связям в пределах одной полипептидной цепи. Модель строения α-спирали (рис. 2), учитывающая все свойства пептидной связи, была предложена Полингом и Кори. Основные особенности α-спирали:

· спиральная конфигурация полипептидной цепи, имеющая винтовую симметрию;

· образование водородных связей между пептидными группами каждого первого и четвертого аминокислотных остатков;

· регулярность витков спирали;

· равнозначность всех аминокислотных остатков в α-спирали независимо от строения их боковых радикалов;

· боковые радикалы аминокислот не участвуют в образовании α-спирали.

Внешне α-спираль похожа на слегка растянутую спираль электрической плитки. Регулярность водородных связей между первой и четвертой пептидными группами определяет и регулярность витков полипептидной цепи. Высота одного витка, или шаг α-спирали, равна 0,54 нм; в него входит 3,6 аминокислотных остатка, т. е. каждый аминокислотный остаток перемещается вдоль оси (высота одного аминокислотного остатка) на 0,15 нм (0,54:3,6 = 0,15 нм), что и позволяет говорить о равнозначности всех аминокислотных остатков в α-спирали. Период регулярности α-спирали равен 5 виткам или 18 аминокислотным остаткам; длина одного периода составляет 2,7 нм. Рис. 3. Модель а-спирали Полинга-Кори

β-Структура . Это разновидность вторичной структуры, которая имеет слабо изогнутую конфигурацию полипептидной цепи и формируется с помощью межпептидных водородных связей в пределах отдельных участков одной полипептидной цепи или смежных полипептидных цепей. Ее называют также слоисто-складчатой структурой. Имеются разновидности β-структур. Ограниченные слоистые участки, образуемые одной полипептидной цепью белка, называют кросс-β-формой (короткая β-структура). Водородные связи в кросс-β-форме образуются между пептидными группами петель полипептидной цепи. Другой тип - полная β-структура - характерен для всей полипептидной цепочки, которая имеет вытянутую форму и удерживается межпептидными водородными связями между смежными параллельными полипептидными цепями (рис. 3). Эта структура напоминает меха аккордеона. Причем возможны варианты β-структур: они могут быть образованы параллельными цепями (N-концы полипептидных цепей направлены в одну и ту же сторону) и антипараллельными (N-концы направлены в разные стороны). Боковые радикалы одного слоя помещаются между боковыми радикалами другого слоя.


В белках возможны переходы от α-структур к β-структурам и обратно вследствие перестройки водородных связей. Вместо регулярных межпептидных водородных связей вдоль цепи (благодаря им полипептидная цепь скручивается в спираль) происходит раскручивание спирализованных участков и замыкание водородных связей между вытянутыми фрагментами полипептидных цепей. Такой переход обнаружен в кератине - белке волос. При мытье волос щелочными моющими средствами легко разрушается спиральная структура β-кератина и он переходит в α-кератин (вьющиеся волосы распрямляются).

Разрушение регулярных вторичных структур белков (α-спирали и β-структур) по аналогии с плавлением кристалла называют "плавлением" полипептидов. При этом водородные связи рвутся, и полипептидные цепи принимают форму беспорядочного клубка. Следовательно, стабильность вторичных структур определяется межпептидными водородными связями. Остальные типы связей почти не принимают в этом участия, за исключением дисульфидных связей вдоль полипептидной цепи в местах расположения остатков цистеина. Короткие пептиды благодаря дисульфидным связям замыкаются в циклы. Во многих белках одновременно имеются α-спиральные участки и β-структуры. Природных белков, состоящих на 100% из α-спирали, почти не бывает (исключение составляет парамиозин - мышечный белок, на 96-100% представляющий собой α-спираль), тогда как у синтетических полипептидов 100%-ная спирализация.

Другие белки имеют неодинаковую степень спирализации. Высокая частота α-спиральных структур наблюдается у парамиозина, миоглобина, гемоглобина. Напротив, у трипсина, рибонуклеазы значительная часть полипептидной цепи укладывается в слоистые β-структуры. Белки опорных тканей: кератин (белок волос, шерсти), коллаген (белок сухожилий, кожи), фиброин (белок натурального шелка) имеют β-конфигурацию полипептидных цепей. Разная степень спирализации полипептидных цепей белков говорит о том, что, очевидно, имеются силы, частично нарушающие спирализацию или "ломающие" регулярную укладку полипептидной цепи. Причиной этого является более компактная укладка полипептидной цепи белка в определенном объеме, т. е. в третичную структуру.

Вторичная структура белка – это способ укладки полипептидной цепи в более компактную структуру, при которой происходит взаимодействие пептидных групп с образованием между ними водородных связей.

Формирование вторичной структуры вызвано стремлением пептида принять конформацию с наибольшим количеством связей между пептидными группами. Тип вторичной структуры зависит от устойчивости пептидной связи, подвижности связи между центральным атомом углерода и углеродом пептидной группы, размером аминокислотного радикала. Все указанное вкупе с аминокислотной последовательностью впоследствии приведет к строго определенной конфигурации белка.

Выделяют два возможных варианта вторичной структуры: в виде "каната" – α-спираль (α-структура), и в виде "гармошки" – β-складчатый слой (β-структура). В одном белке, как правило, одновременно присутствуют обе структуры, но в разном долевом соотношении. В глобулярных белках преобладает α-спираль, в фибриллярных – β-структура.

Вторичная структура образуется только при участии водородных связей между пептидными группами: атом кислорода одной группы реагирует с атомом водорода второй, одновременно кислород второй пептидной группы связывается с водородом третьей и т.д.

α-Спираль

Данная структура является правозакрученной спиралью, образуется при помощи водородных связей между пептидными группами 1-го и 4-го, 4-го и 7-го, 7-го и 10-го и так далее аминокислотных остатков.

Формированию спирали препятствуют пролин и гидроксипролин, которые из-за своей циклической структуры обусловливают "перелом" цепи, т.е. ее принудительный изгиб как, например, в коллагене .

Высота витка спирали составляет 0,54 нм и соответствует высоте 3,6 аминокислотных остатков, 5 полных витков соответствуют 18 аминокислотам и занимают 2,7 нм.

β-Складчатый слой

В этом способе укладки белковая молекула лежит "змейкой", удаленные отрезки цепи оказываются поблизости друг от друга. В результате пептидные группы ранее удаленных аминокислот белковой цепи способны взаимодействовать при помощи водородных связей.

Пептидные цепи белков организованы во вторичную структуру, стабили-зированную водородными связями. Атом кислорода каждой пептидной груп-пы образует при этом водородную связь с NH -группой, соответствующей пеп-тидной связи. При этом формируются следующие структуры: а-спираль, b-структура и b-изгиб. а-Спираль. Одной из наиболее термодинамически выгодных структур яв-ляется правая а-спираль. а-спираль, представляющая устойчивую структуру, в которой каждая карбонильная группа образует водо-родную связь с четвертой по ходу цепи NH -группой. В а-спирали на один ее виток приходится 3,6 аминокислотного остатка, шаг спирали составляет при-мерно 0,54 нм, а расстояние между остатками — 0,15 нм. L -Аминокислоты могут образовывать только правые а-спирали, причем боковые радикалы расположены по обе стороны оси и обращены наружу. В а-спирали полностью использована возможность образования водородных связей, поэтому она не способна в отличие от b -структуры образовывать водо-родные связи с другими элементами вторичной структуры. При образовании а-спирали боковые цепи аминокислот могут сближаться, образуя гидрофобные или гидрофильные компактные сайты. Эти сайты играют существенную роль при образовании трехмерной конформации белковой макромолекулы, так как используются для упаковки а-спиралей в пространственной структуре белка. Спираль-клубок . Содержание а-спиралей в белках неодинаково и явля-ется индивидуальной особенностью каждой белковой макромолекулы. Для некоторых белков, например для миоглобина, а-спираль лежит в основе структуры, другие, например химотрипсин, не имеют а-спирализованных уча-стков. В среднем глобулярные белки имеют степень спирализации порядка 60—70%. Спирализованные участки чередуются с хаотическими клубками, причем в результате денатурации переходы спираль—клубок увеличиваются. Спирализация полипептидной цепи зависит от аминокислотных остатков, ее образующих. Так, отрицательно заряженные группы глутаминовой кислоты, расположенные в непосредственной близости друг от друга, испытывают сильное взаимное отталкивание, что препятствует образованию соответствую-щих водородных связей в а-спирали. По той же причине спирализация цепи затруднена в результате отталкивания близко расположенных положительно заряженных химических группировок лизина или аргинина. Большие размеры радикалов аминокислот также являются причиной, по которой спирализация полипептидной цепи затруднена (серин, треонин, лейцин). Наиболее часто интерферирующим фактором при образовании а-спирали является амино-кислота пролин. Кроме того, пролин не образует внутрицепочечную водородную связь из-за отсутствия при атоме азота водородного атома. Таким образом, во всех случаях, когда в полипептид-ной цепи встречается пролин, а-спиральная структура нарушается и образует-ся клубок или (b -изгиб). b-Структура. В отличие от а-спирали b -структура образована за счет межцепочечных водородных связей между соседними участками полипептид-ной цепи, так как внутрицепочечные контакты отсутствуют. Если эти участки направлены в одну сторону, то такая структура называется параллельной, если же в противоположную, то антипараллельной. Полипептидная цепь в b-структуре сильно вытянута и имеет не спираль-ную, а скорее зигзагообразную форму. Расстояние между соседними амино-кислотными остатками по оси составляет 0,35 нм, т. е. в три раза больше, чем в а-спирали, число остатков на виток равно 2. В случае параллельного расположения b -структуры водородные связи ме-нее прочны по сравнению с таковыми при антипараллельном расположении аминокислотных остатков. В отличие от а-спирали, насыщенной водородны-ми связями, каждый участок полипептидной цепи в b -структуре открыт для образования дополнительных водородных связей. Сказанное относится как к параллельной, так и к антипараллельной b -структуре, однако в антипарал-лельной структуре связи более стабильны. В отрезке полипептидной цепи, об-разующей b -структуру, находится от трех до семи аминокислотных остатков, а сама b -структура состоит из 2—6 цепей, хотя их число может быть и большим. b -Структура имеет складчатую форму, зависящую от соответствующих а-углеродных атомов. Поверхность ее может быть плоской и левозакрученной таким образом, чтобы угол между отдельными отрезками цепи составлял 20—25 о. b-Изгиб . Глобулярные белки имеют шарообразную форму во многом бла-годаря тому, что для полипептидной цепи характерно наличие петель, зигза-гов, шпилек, причем направление цепи может изменяться даже на 180°. В пос-леднем случае имеет место b-изгиб. Этот изгиб по форме напоминает шпильку для волос и стабилизируется одной водородной связью. Фактором, препятствующим его образованию, мо-гут быть большие боковые радикалы, и поэтому довольно часто наблюдается включение в него наименьшего аминокислотного остатка — глицина. Эта кон-фигурация оказывается всегда на поверхности белковой глобулы, в связи, с чем B-изгиб принимает участие во взаимодействии с другими полипептидными цепями. Супервторичные структуры. Впервые супервторичные структуры белков были постулированы и затем обнаружены Л. Полингом и Р. Кори. В качестве примера можно привести суперспирализованную а-спираль, в которой две а-спирали скручены в левую суперспираль. Однако чаще суперспи-ральные структуры включают в себя как а-спирали, так и b-складчатые листы. Их состав может быть представлен следующим образом: (аа), (а b ), (b а) и (b Х b ). Последний вариант представляет собой два параллельных складчатых листа, между которыми находится статистический клубок (b С b ). Соотношение между вторичной и супервторичной структурами имеет вы-сокую степень вариабильности и зависит от индивидуальных особенностей той или иной белковой макромолекулы. Домены — более сложные уровни организации вторичной структуры. Они представляют собой обособленные глобулярные участки, соединенные друг с другом короткими так называемыми шарнирными участками полипеп-тидной цепи. Д. Бирктофт одним из первых описал доменную организацию химотрипсина, отметив наличие двух доменов у этого белка.

водородными связями

Различают a-спираль, b-структуру (клубок) .

Структура α-спирали была предложенаPauling и Corey

коллагене

b-Структура

Рис. 2.3. b-Структура

Структура имеет плоскую форму параллельная b-структура ; если в противоположном – антипараллельная b-структура

суперспираль. протофибрилл микрофибриллы диаметром 10 нм.

Bombyx mori фиброин

Неупорядоченная конформация.

Надвторичная структура.

ПОСМОТРЕТЬ ЕЩЕ:

СТРУКТУРНАЯ ОРГАНИЗАЦИЯ БЕЛКОВ

Доказано существование 4 уровней структурной организации белковой молекулы.

Первичная структура белка – последовательность расположения аминокислотных остатков в полипептидной цепи. В белках отдельные аминокислоты связаны друг с другом пептидными связями , возникающими при взаимодействии a-карбоксильных и a-аминогрупп аминокислот.

К настоящему времени расшифрована первичная структура десятков тысяч разных белков. Для определения первичной структуры белка методами гидролиза выясняют аминокислотный состав. Затем определяют химическую природу концевых аминокислот. Следующий этап — определение последовательности аминокислот в полипептидной цепи. Для этого используют избирательный частичный (химический и ферментативный) гидролиз. Возможно применение рентгеноструктурного анализа, а также данных о комплементарной нуклеотидной последовательности ДНК.

Вторичная структура белка – конфигурация полипептидной цепи, т.е. способ упаковки полипептидной цепи в определенную конформацию. Процесс этот протекает не хаотично, а в соответствии с программой, заложенной в первичной структуре.

Стабильность вторичной структуры обеспечивается в основном водородными связями, однако определенный вклад вносят ковалентные связи – пептидные и дисульфидные.

Наиболее вероятным типом строения глобулярных белков считают a-спираль . Закручивание полипептидной цепи происходит по часовой стрелке. Для каждого белка характерна определенная степень спирализации. Если цепи гемоглобина спирализованы на 75%, то пепсина-всего на 30%.

Тип конфигурации полипептидных цепей, обнаруженных в белках волос, шелка, мышц, получил название b-структуры .

Сегменты пептидной цепи располагаются в один слой, образуя фигуру, подобную листу, сложенному в гармошку. Слой может быть образован двумя или большим количеством пептидных цепей.

В природе существуют белки, строение которых не соответствует ни β-, ни a-структуре, например, коллаген — фибриллярный белок, составляющий основную массу соединительной ткани в организме человека и животных.

Третичная структура белка – пространственная ориентация полипептидной спирали или способ укладки полипептидной цепи в определенном объеме. Первый белок, третичная структура которого была выяснена рентгеноструктурным анализом — миоглобин кашалота (рис. 2).

В стабилизации пространственной структуры белков, помимо ковалентных связей, основную роль играют нековалентные связи (водородные, электростатические взаимодействия заряженных групп, межмолекулярные ван-дер-ваальсовы силы, гидрофобные взаимодействия и т.д.).

По современным представлениям, третичная структура белка после завершения его синтеза формируется самопроизвольно. Основной движущей силой является взаимодействие радикалов аминокислот с молекулами воды. При этом неполярные гидрофобные радикалы аминокислот погружаются внутрь белковой молекулы, а полярные радикалы ориентируются в сторону воды. Процесс формирование нативной пространственной структуры полипептидной цепи называют фолдингом . Из клеток выделены белки, названные шаперонами. Они участвуют в фолдинге. Описан ряд наследственных заболеваний человека, развитие которых связывают с нарушением вследствие мутаций процесса фолдинга (пигментозы, фиброзы и др.).

Методами рентгеноструктурного анализа доказано существование уровней структурной организации белковой молекулы, промежуточных между вторичной и третичной структурами. Домен — это компактная глобулярная структурная единица внутри полипептидной цепи (рис. 3). Открыто много белков (например, иммуноглобулины), состоящих из разных по структуре и функциям доменов, кодируемых разными генами.

Все биологические свойства белков связаны с сохранностью их третичной структуры, которую называют нативной . Белковая глобула не является абсолютно жесткой структурой: возможны обратимые перемещения частей пептидной цепи. Эти изменения не нарушают общей конформации молекулы. На конформацию молекулы белка оказывают влияние рН среды, ионная сила раствора, взаимодействие с другими веществами. Любые воздействия, приводящие к нарушению нативной конформации молекулы, сопровождаются частичной или полной потерей белком его биологических свойств.

Четвертичная структура белка — способ укладки в пространстве отдельных полипептидных цепей, обладающих одинаковой или разной первичной, вторичной или третичной структурой, и формирование единого в структурном и функциональном отношениях макромолекулярного образования.

Белковую молекулу, состоящую из нескольких полипептидных цепей, называют олигомером , а каждую входящую в него цепь — протомером . Олигомерные белки чаще построены из четного числа протомеров, например, молекула гемоглобина состоит из двух a- и двух b-полипептидных цепей (рис. 4).

Четвертичной структурой обладает около 5% белков, в том числе гемоглобин, иммуноглобулины. Субъединичное строение свойственно многим ферментам.

Белковые молекулы, входящие в состав белка с четвертичной структурой, образуются на рибосомах по отдельности и лишь после окончания синтеза образуют общую надмолекулярную структуру. Биологическую активность белок приобретает только при объединении входящих в его состав протомеров. В стабилизации четвертичной структуры принимают участие те же типы взаимодействий, что и в стабилизации третичной.

Некоторые исследователи признают существование пятого уровня структурной организации белков. Это метаболоны — полифункциональные макромолекулярные комплексы разных ферментов, катализирующих весь путь превращений субстрата (синтетазы высших жирных кислот, пируватдегидрогеназный комплекс, дыхательная цепь).

Вторичная структура белка

Вторичная структура – способ укладки полипептидной цепи в упорядоченную структуру. Вторичная структура определяется первичной структурой. Поскольку первичная структура генетически детерминирована, формирование вторичной структуры может происходить при выходе полипептидной цепи из рибосомы. Вторичная структура стабилизируется водородными связями , которые образуются между NH- и СО-группами пептидных связи.

Различают a-спираль, b-структуру и неупорядоченную конформацию (клубок) .

Структура α-спирали была предложенаPauling и Corey (1951). Это разновидность вторичной структуры белка, имеющая вид регулярной спирали (рис. 2.2). α-Спираль – это палочкообразная структура, в которой пептидные связи расположены внутри спирали, а боковые радикалы аминокислот – снаружи. a-Спираль стабилизирована водородными связями, которые параллельны оси спирали и возникают между первым и пятым аминокислотными остатками. Таким образом, в протяженных спиральных участках каждый аминокислотный остаток принимает участие в формировании двух водородных связей.

Рис. 2.2. Структура α-спирали.

На один виток спирали приходится 3,6 аминокислотных остатка, шаг спирали 0,54 нм, на один аминокислотный остаток приходится 0,15 нм. Угол подъема спирали 26°. Период регулярности a-спирали равен 5 виткам или 18 аминокислотным остаткам. Наиболее распространены правые a-спирали, т.е. закручивание спирали идет по часовой стрелке. Образованию a-спирали препятствует пролин, аминокислоты с заряженным и объемными радикалами (электростатическое и механическое препятствие).

Другая форма спирали присутствует в коллагене . В организме млекопитающих коллаген – преобладающий в количественном отношении белок: он составляет 25% общего белка. Коллаген присутствует в различных формах, прежде всего, в соединительной ткани. Это левая спираль с шагом 0,96 нм и 3,3 остатка в каждом витке, более пологая по сравнению с α-спиралью. В отличие от α-спирали образование водородных мостиков здесь невозможно. Коллаген имеет необычный аминокислотный состав: 1/3 составляет глицин, примерно 10% пролин, а также гидроксипролин и гидроксилизин. Последние две аминокислоты образуются после биосинтеза коллагена путем посттрансляционной модификации. В структуре коллагена постоянно повторяется триплет гли-X-Y, причем положение Х часто занимает пролин, а Y – гидроксилизин. Имеются веские основания тому, что коллаген повсеместно присутствует в виде правой тройной спирали, скрученной из трех первичных левых спиралей. В тройной спирали каждый третий остаток оказывается в центре, где по стерическим причинам помещается только глицин. Вся молекула коллаген имеет длину около 300 нм.

b-Структура (b-складчатый слой). Встречается в глобулярных белках, а также в некоторых фибриллярных белках, например, фиброин шелка (рис. 2.3).

Рис. 2.3. b-Структура

Структура имеет плоскую форму . Полипептидные цепи почти полностью вытянуты, а не туго скручены, как в a-спирали. Плоскости пептидных связей расположены в пространстве подобно равномерным складкам листа бумаги.

Вторичная структура полипептидов и белков

Стабилизируется водородными связями между СО- и NH-группами пептидных связей соседних полипептидных цепей. Если полипептидные цепи, образующие b-структуру идут в одном направлении (т.е. совпадают С- и N-концы) – параллельная b-структура ; если в противоположном – антипараллельная b-структура . Боковые радикалы одного слоя помещаются между боковыми радикалами другого слоя. Если одна полипептидная цепь изгибается и идет параллельно себе, то это антипараллельная b-кросс-структура . Водородные связи в b-кросс-структуре образуются между пептидными группами петель полипептидной цепи.

Содержание a-спиралей в белках, изученных к настоящему времени, крайне вариабельно. В некоторых белках, например, миоглобине и гемоглобине, a-спираль лежит в основе структуры и составляет 75%, в лизоциме – 42%, в пепсине всего 30%. Другие белки, например, пищеварительный фермент химотрипсин, практически лишены a-спиральной структуры и значительная часть полипептидной цепи укладывается в слоистые b-структуры. Белки опорных тканей коллаген (белок сухожилий, кожи), фиброин (белок натурального шелка) имеют b-конфигурацию полипептидных цепей.

Доказано, что образованию α-спирали способствуют глу, ала, лей, а β-структуры – мет, вал, иле; в местах изгиба полипептидной цепи – гли, про, асн. Считают, что шесть сгруппированных остатков, четыре из которых способствуют образованию спирали, можно рассматривать как центр спирализации. От этого центра идет рост спиралей в обоих направлениях до участка – тетрапептида, состоящего из остатков, которые препятствуют образованию этих спиралей. При формировании β-структуры роль затравок выполняют три аминокислотных остатка из пяти, способствующие образованию β-структуры.

В большинстве структурных белков преобладает одна из вторичных структур, что предопределяется их аминокислотным составом. Структурным белком, построенным преимущественно в виде α-спирали, является α-кератин. Волосы (шерсть), перья, иглы, когти и копыта животных состоят главным образом из кератина. В качестве компонента промежуточных филаментов кератин (цитокератин) является важнейшей составной частью цитоскелета. В кератинах большая часть пептидной цепи свернута в правую α-спираль. Две пептидные цепи образуют единую левую суперспираль. Суперспирализованные димеры кератина объединяются в тетрамеры, которые агрегируют с образованием протофибрилл диаметром 3 нм. Наконец, восемь протофибрилл образуют микрофибриллы диаметром 10 нм.

Волосы построены из таких же фибрилл. Так, в отдельном волокне шерсти диаметром 20 мкм переплетены миллионы фибрилл. Отдельные цепи кератина скреплены поперечно многочисленными дисульфидными связями, что придает им дополнительную прочность. При химической завивке происходят следующие процессы: вначале путем восстановления тиолами разрушаются дисульфидные мостики, а затем для придания волосам необходимой формы их высушивают при нагревании. При этом за счет окисления кислородом воздуха образуются новые дисульфидные мостики, которые сохраняют форму прически.

Шелк получают из коконов гусениц тутового шелкопряда (Bombyx mori ) и родственных видов. Основной белок шелка, фиброин , обладает структурой антипараллельного складчатого слоя, причем сами слои располагаются параллельно друг другу, образуя многочисленные пласты. Так как в складчатых структурах боковые цепи аминокислотных остатков ориентированы вертикально вверх и вниз, в промежутках между отдельными слоями могут поместиться лишь компактные группировки. Фактически фиброин состоит на 80% из глицина, аланина и серина, т.е. трех аминокислот, характеризующихся минимальными размерами боковых цепей. Молекула фиброина содержит типичный повторяющийся фрагмент (гли-ала-гли-ала-гли-сер)n.

Неупорядоченная конформация. Участки белковой молекулы, которые не относятся к спиральным или складчатым структурам, называют неупорядоченными.

Надвторичная структура. Альфа-спиральные и бета-структурные участки в белках могут взаимодействовать друг с другом и между собой, образуя ансамбли. Встречающиеся в нативных белках надвторичные структуры – энергетически наиболее предпочтительны. К ним относят суперспирализованную α-спираль, в которой две α-спирали скручены относительно друг друга, образуя левую суперспираль (бактериородопсин, гемэритрин); чередующиеся α-спиральные и β-структурные фрагменты полипептидной цепи (например, βαβαβ-звено по Россману, найдено в НАД+-связывающем участке молекул ферментов дегидрогеназ); антипараллельная трехцепочечная β-структура (βββ) называется β-зигзаг и обнаружена в ряде ферментов микроорганизмов, простейших и позвоночных.

Предыдущая234567891011121314151617Следующая

ПОСМОТРЕТЬ ЕЩЕ:

Вторичная структура белков

Пептидные цепи белков организованы во вторичную структуру, стабили-зированную водородными связями. Атом кислорода каждой пептидной груп-пы образует при этом водородную связь с NH-группой, соответствующей пеп-тидной связи. При этом формируются следующие структуры: а-спираль, b-структура и b-изгиб.а-Спираль. Одной из наиболее термодинамически выгодных структур яв-ляется правая а-спираль. а-спираль, представляющая устойчивую структуру, в которой каждая карбонильная группа образует водо-родную связь с четвертой по ходу цепи NH-группой.

Белки: Вторичная структура белков

В а-спирали на один ее виток приходится 3,6 аминокислотного остатка, шаг спирали составляет при-мерно 0,54 нм, а расстояние между остатками — 0,15 нм. L-Аминокислоты могут образовывать только правые а-спирали, причем боковые радикалы расположены по обе стороны оси и обращены наружу. В а-спирали полностью использована возможность образования водородных связей, поэтому она не способна в отличие от b-структуры образовывать водо-родные связи с другими элементами вторичной структуры. При образовании а-спирали боковые цепи аминокислот могут сближаться, образуя гидрофобные или гидрофильные компактные сайты. Эти сайты играют существенную роль при образовании трехмерной конформации белковой макромолекулы, так как используются для упаковки а-спиралей в пространственной структуре белка. Спираль-клубок. Содержание а-спиралей в белках неодинаково и явля-ется индивидуальной особенностью каждой белковой макромолекулы. Для некоторых белков, например для миоглобина, а-спираль лежит в основе структуры, другие, например химотрипсин, не имеют а-спирализованных уча-стков. В среднем глобулярные белки имеют степень спирализации порядка 60—70%. Спирализованные участки чередуются с хаотическими клубками, причем в результате денатурации переходы спираль—клубок увеличиваются. Спирализация полипептидной цепи зависит от аминокислотных остатков, ее образующих. Так, отрицательно заряженные группы глутаминовой кислоты, расположенные в непосредственной близости друг от друга, испытывают сильное взаимное отталкивание, что препятствует образованию соответствую-щих водородных связей в а-спирали. По той же причине спирализация цепи затруднена в результате отталкивания близко расположенных положительно заряженных химических группировок лизина или аргинина. Большие размеры радикалов аминокислот также являются причиной, по которой спирализация полипептидной цепи затруднена (серин, треонин, лейцин). Наиболее часто интерферирующим фактором при образовании а-спирали является амино-кислота пролин. Кроме того, пролин не образует внутрицепочечную водородную связь из-за отсутствия при атоме азота водородного атома. Таким образом, во всех случаях, когда в полипептид-ной цепи встречается пролин, а-спиральная структура нарушается и образует-ся клубок или (b-изгиб).b-Структура. В отличие от а-спирали b-структура образована за счет межцепочечных водородных связей между соседними участками полипептид-ной цепи, так как внутрицепочечные контакты отсутствуют. Если эти участки направлены в одну сторону, то такая структура называется параллельной, если же в противоположную, то антипараллельной. Полипептидная цепь в b-структуре сильно вытянута и имеет не спираль-ную, а скорее зигзагообразную форму. Расстояние между соседними амино-кислотными остатками по оси составляет 0,35 нм, т. е. в три раза больше, чем в а-спирали, число остатков на виток равно 2. В случае параллельного расположения b-структуры водородные связи ме-нее прочны по сравнению с таковыми при антипараллельном расположении аминокислотных остатков. В отличие от а-спирали, насыщенной водородны-ми связями, каждый участок полипептидной цепи в b-структуре открыт для образования дополнительных водородных связей. Сказанное относится как к параллельной, так и к антипараллельной b-структуре, однако в антипарал-лельной структуре связи более стабильны. В отрезке полипептидной цепи, об-разующей b-структуру, находится от трех до семи аминокислотных остатков, а сама b-структура состоит из 2—6 цепей, хотя их число может быть и большим. b-Структура имеет складчатую форму, зависящую от соответствующих а-углеродных атомов. Поверхность ее может быть плоской и левозакрученной таким образом, чтобы угол между отдельными отрезками цепи составлял 20—25о. b-Изгиб. Глобулярные белки имеют шарообразную форму во многом бла-годаря тому, что для полипептидной цепи характерно наличие петель, зигза-гов, шпилек, причем направление цепи может изменяться даже на 180°. В пос-леднем случае имеет место b-изгиб. Этот изгиб по форме напоминает шпильку для волос и стабилизируется одной водородной связью. Фактором, препятствующим его образованию, мо-гут быть большие боковые радикалы, и поэтому довольно часто наблюдается включение в него наименьшего аминокислотного остатка — глицина. Эта кон-фигурация оказывается всегда на поверхности белковой глобулы, в связи, с чем B-изгиб принимает участие во взаимодействии с другими полипептидными цепями. Супервторичные структуры. Впервые супервторичные структуры белков были постулированы и затем обнаружены Л. Полингом и Р. Кори. В качестве примера можно привести суперспирализованную а-спираль, в которой две а-спирали скручены в левую суперспираль. Однако чаще суперспи-ральные структуры включают в себя как а-спирали, так и b-складчатые листы. Их состав может быть представлен следующим образом: (аа), (аb), (bа) и (bХb). Последний вариант представляет собой два параллельных складчатых листа, между которыми находится статистический клубок (bСb).Соотношение между вторичной и супервторичной структурами имеет вы-сокую степень вариабильности и зависит от индивидуальных особенностей той или иной белковой макромолекулы. Домены — более сложные уровни организации вторичной структуры. Они представляют собой обособленные глобулярные участки, соединенные друг с другом короткими так называемыми шарнирными участками полипеп-тидной цепи. Д. Бирктофт одним из первых описал доменную организацию химотрипсина, отметив наличие двух доменов у этого белка.

Вторичная структура белка

Вторичная структура – способ укладки полипептидной цепи в упорядоченную структуру. Вторичная структура определяется первичной структурой. Поскольку первичная структура генетически детерминирована, формирование вторичной структуры может происходить при выходе полипептидной цепи из рибосомы. Вторичная структура стабилизируется водородными связями , которые образуются между NH- и СО-группами пептидных связи.

Различают a-спираль, b-структуру и неупорядоченную конформацию (клубок) .

Структура α-спирали была предложенаPauling и Corey (1951). Это разновидность вторичной структуры белка, имеющая вид регулярной спирали (рис.

Конформация полипептидной цепи. Вторичная структура полипептидной цепи

2.2). α-Спираль – это палочкообразная структура, в которой пептидные связи расположены внутри спирали, а боковые радикалы аминокислот – снаружи. a-Спираль стабилизирована водородными связями, которые параллельны оси спирали и возникают между первым и пятым аминокислотными остатками. Таким образом, в протяженных спиральных участках каждый аминокислотный остаток принимает участие в формировании двух водородных связей.

Рис. 2.2. Структура α-спирали.

На один виток спирали приходится 3,6 аминокислотных остатка, шаг спирали 0,54 нм, на один аминокислотный остаток приходится 0,15 нм. Угол подъема спирали 26°. Период регулярности a-спирали равен 5 виткам или 18 аминокислотным остаткам. Наиболее распространены правые a-спирали, т.е. закручивание спирали идет по часовой стрелке. Образованию a-спирали препятствует пролин, аминокислоты с заряженным и объемными радикалами (электростатическое и механическое препятствие).

Другая форма спирали присутствует в коллагене . В организме млекопитающих коллаген – преобладающий в количественном отношении белок: он составляет 25% общего белка. Коллаген присутствует в различных формах, прежде всего, в соединительной ткани. Это левая спираль с шагом 0,96 нм и 3,3 остатка в каждом витке, более пологая по сравнению с α-спиралью. В отличие от α-спирали образование водородных мостиков здесь невозможно. Коллаген имеет необычный аминокислотный состав: 1/3 составляет глицин, примерно 10% пролин, а также гидроксипролин и гидроксилизин. Последние две аминокислоты образуются после биосинтеза коллагена путем посттрансляционной модификации. В структуре коллагена постоянно повторяется триплет гли-X-Y, причем положение Х часто занимает пролин, а Y – гидроксилизин. Имеются веские основания тому, что коллаген повсеместно присутствует в виде правой тройной спирали, скрученной из трех первичных левых спиралей. В тройной спирали каждый третий остаток оказывается в центре, где по стерическим причинам помещается только глицин. Вся молекула коллаген имеет длину около 300 нм.

b-Структура (b-складчатый слой). Встречается в глобулярных белках, а также в некоторых фибриллярных белках, например, фиброин шелка (рис. 2.3).

Рис. 2.3. b-Структура

Структура имеет плоскую форму . Полипептидные цепи почти полностью вытянуты, а не туго скручены, как в a-спирали. Плоскости пептидных связей расположены в пространстве подобно равномерным складкам листа бумаги. Стабилизируется водородными связями между СО- и NH-группами пептидных связей соседних полипептидных цепей. Если полипептидные цепи, образующие b-структуру идут в одном направлении (т.е. совпадают С- и N-концы) – параллельная b-структура ; если в противоположном – антипараллельная b-структура . Боковые радикалы одного слоя помещаются между боковыми радикалами другого слоя. Если одна полипептидная цепь изгибается и идет параллельно себе, то это антипараллельная b-кросс-структура . Водородные связи в b-кросс-структуре образуются между пептидными группами петель полипептидной цепи.

Содержание a-спиралей в белках, изученных к настоящему времени, крайне вариабельно. В некоторых белках, например, миоглобине и гемоглобине, a-спираль лежит в основе структуры и составляет 75%, в лизоциме – 42%, в пепсине всего 30%. Другие белки, например, пищеварительный фермент химотрипсин, практически лишены a-спиральной структуры и значительная часть полипептидной цепи укладывается в слоистые b-структуры. Белки опорных тканей коллаген (белок сухожилий, кожи), фиброин (белок натурального шелка) имеют b-конфигурацию полипептидных цепей.

Доказано, что образованию α-спирали способствуют глу, ала, лей, а β-структуры – мет, вал, иле; в местах изгиба полипептидной цепи – гли, про, асн. Считают, что шесть сгруппированных остатков, четыре из которых способствуют образованию спирали, можно рассматривать как центр спирализации. От этого центра идет рост спиралей в обоих направлениях до участка – тетрапептида, состоящего из остатков, которые препятствуют образованию этих спиралей. При формировании β-структуры роль затравок выполняют три аминокислотных остатка из пяти, способствующие образованию β-структуры.

В большинстве структурных белков преобладает одна из вторичных структур, что предопределяется их аминокислотным составом. Структурным белком, построенным преимущественно в виде α-спирали, является α-кератин. Волосы (шерсть), перья, иглы, когти и копыта животных состоят главным образом из кератина. В качестве компонента промежуточных филаментов кератин (цитокератин) является важнейшей составной частью цитоскелета. В кератинах большая часть пептидной цепи свернута в правую α-спираль. Две пептидные цепи образуют единую левую суперспираль. Суперспирализованные димеры кератина объединяются в тетрамеры, которые агрегируют с образованием протофибрилл диаметром 3 нм. Наконец, восемь протофибрилл образуют микрофибриллы диаметром 10 нм.

Волосы построены из таких же фибрилл. Так, в отдельном волокне шерсти диаметром 20 мкм переплетены миллионы фибрилл. Отдельные цепи кератина скреплены поперечно многочисленными дисульфидными связями, что придает им дополнительную прочность. При химической завивке происходят следующие процессы: вначале путем восстановления тиолами разрушаются дисульфидные мостики, а затем для придания волосам необходимой формы их высушивают при нагревании. При этом за счет окисления кислородом воздуха образуются новые дисульфидные мостики, которые сохраняют форму прически.

Шелк получают из коконов гусениц тутового шелкопряда (Bombyx mori ) и родственных видов. Основной белок шелка, фиброин , обладает структурой антипараллельного складчатого слоя, причем сами слои располагаются параллельно друг другу, образуя многочисленные пласты. Так как в складчатых структурах боковые цепи аминокислотных остатков ориентированы вертикально вверх и вниз, в промежутках между отдельными слоями могут поместиться лишь компактные группировки. Фактически фиброин состоит на 80% из глицина, аланина и серина, т.е. трех аминокислот, характеризующихся минимальными размерами боковых цепей. Молекула фиброина содержит типичный повторяющийся фрагмент (гли-ала-гли-ала-гли-сер)n.

Неупорядоченная конформация. Участки белковой молекулы, которые не относятся к спиральным или складчатым структурам, называют неупорядоченными.

Надвторичная структура. Альфа-спиральные и бета-структурные участки в белках могут взаимодействовать друг с другом и между собой, образуя ансамбли. Встречающиеся в нативных белках надвторичные структуры – энергетически наиболее предпочтительны. К ним относят суперспирализованную α-спираль, в которой две α-спирали скручены относительно друг друга, образуя левую суперспираль (бактериородопсин, гемэритрин); чередующиеся α-спиральные и β-структурные фрагменты полипептидной цепи (например, βαβαβ-звено по Россману, найдено в НАД+-связывающем участке молекул ферментов дегидрогеназ); антипараллельная трехцепочечная β-структура (βββ) называется β-зигзаг и обнаружена в ряде ферментов микроорганизмов, простейших и позвоночных.

Предыдущая234567891011121314151617Следующая

ПОСМОТРЕТЬ ЕЩЕ:

БЕЛКИ Вариант 1 А1.Структурным звеном белков являются: …

5 — 9 классы

БЕЛКИ
Вариант 1
А1.Структурным звеном белков являются:
А)
Амины
В)
Аминокислоты
Б)
Глюкоза
Г)
Нуклеотиды
А2. Образование спирали характеризует:
А)
Первичную структуру белка
В)
Третичную структуру белка
Б)
Вторичную структуру белка
Г)
Четвертичную структуру белка
А3. Действие каких факторов вызывает необратимую денатурацию белка?
А)
Взаимодействие с растворами солей свинца, железа, ртути
Б)
Воздействие на белок концентрированным раствором азотной кислоты
В)
Сильное нагревание
Г)
Все перечисленные факторы верны
А4. Укажите, что наблюдается при действии на растворы белков концентрированной азотной кислоты:
А)
Выпадение белого осадка
В)
Красно-фиолетовое окрашивание
Б)
Выпадение черного осадка
Г)
Желтое окрашивание
А5. Белки, выполняющие каталитическую функцию, называются:
А)
Гормонами
В)
Ферментами
Б)
Витаминами
Г)
Протеинами
А6. Белок гемоглобин выполняет следующую функцию:
А)
Каталитическую
В)
Строительную
Б)
Защитную
Г)
Транспортную

Часть Б
Б1. Соотнесите:
Тип белковой молекулы
Свойство
1)
Глобулярные белки
А)
Молекула свернута в клубок
2)
Фибриллярные белки
Б)
Не растворяются в воде

В)
В воде растворяются или образуют коллоидные растворы

Г)
Нитевидная структура

Вторичная структура

Белки:
А)
Построены из остатков аминокислот
Б)
Содержат в своем составе только углерод, водород и кислород
В)
Гидролизуются в кислотной и щелочной среде
Г)
Способны к денатурации
Д)
Являются полисахаридами
Е)
Являются природными полимерами

Часть С
С1. Напишите уравнения реакций, с помощью которых из этанола и неорганических веществ можно получить глицин.

§ 8. ПРОСТРАНСТВЕННАЯ ОРГАНИЗАЦИЯ БЕЛКОВОЙ МОЛЕКУЛЫ

Первичная структура

Под первичной структурой белка понимают количество и порядок чередования аминокислотных остатков, соединенных друг с другом пептидными связями, в полипептидной цепи.

Полипептидная цепь на одном конце содержит свободную, не участвующую в образовании пептидной связи, NH 2 -группу, этот участок обозначается как N–конец . На противоположной стороне располагается свободная, не участвующая в образовании пептидной связи, НООС-группа, это – С-конец . За начало цепи принимается N-конец, именно с него начинается нумерация аминокислотных остатков:

Аминокислотную последовательность инсулина установил Ф. Сэнгер (Кембриджский университет). Этот белок состоит из двух полипептидных цепей. Одна цепь состоит из 21 аминокислотного остатка, другая цепь – из 30. Цепи связаны двумя дисульфидными мостиками (рис.6).

Рис. 6. Первичная структура инсулина человека

На расшифровку этой структуры было затрачено 10 лет (1944 – 1954 гг.). В настоящее время первичная структура определена у многих белков, процесс ее определения автоматизирован и не представляет собой серьезную проблему для исследователей.

Информация о первичной структуре каждого белка закодирована в гене (участке молекулы ДНК) и реализуется в ходе транскрипции (переписывании информации на мРНК) и трансляции (синтеза полипептидной цепи). В связи с этим можно установить первичную структуру белка также по известной структуре соответствующего гена.

По первичной структуре гомологичных белков можно судить о таксономическом родстве видов. К гомологичным белкам относятся те белки, которые у разных видов выполняют одинаковые функции. Такие белки имеют сходные аминокислотные последовательности. Например, белок цитохром С у большинства видов имеет относительную молекулярную массу около 12500 и содержит около 100 аминокислотных остатков. Различия в первичной структуре цитохрома С двух видов пропорциональны филогенетическому различию между данными видами. Так цитохромы С лошади и дрожжей отличаются по 48 аминокислотным остаткам, курицы и утки – по двум, цитохромы же курицы и индейки идентичны.

Вторичная структура

Вторичная структура белка формируется вследствие образования водородных связей между пептидными группами. Различают два типа вторичной структуры: α-спираль и β-структура (или складчатый слой) . В белках могут присутствовать также участки полипептидной цепи, не образующие вторичную структуру.

α-Спираль по форме напоминает пружину. При формировании α-спирали атом кислорода каждой пептидной группы образует водородную связь с атомом водорода четвертой по ходу цепи NH-группы:

Каждый виток спирали связан со следующим витком спирали несколькими водородными связями, что придает структуре значительную прочность. α-Спираль обладает следующими характеристиками: диаметр спирали 0,5 нм, шаг спирали – 0,54 нм, на один виток спирали приходится 3,6 аминокислотных остатка (рис. 7).

Рис. 7. Модель a-спирали, отражающая ее количественные характеристики

Боковые радикалы аминокислот направлены наружу от -спирали (рис. 8).

Рис. 8. Модель -спирали, отражающая пространственное расположение боковых радикалов

Из природных L-аминокислот может быть построена как правая, так и левая -спираль. Для большинства природных белков характерна правая спираль. Из D-аминокислот также можно построить как левую, так и правую спираль. Полипептидная же цепь, состоящая из смеси D-и L-аминокислотных остатков, не способна образовывать спираль.

Некоторые аминокислотные остатки препятствуют образованию α-спирали. Например, если в цепи подряд расположено несколько положительно или отрицательно заряженных аминокислотных остатков, такой участок не примет α-спиральной структуры из-за взаимного отталкивания одноименно заряженных радикалов. Затрудняют образование -спирали радикалы аминокислотных остатков, имеющих большие размеры. Препятствием для образования α-спирали, является также наличие в полипептидной цепи остатков пролина (рис. 9). В остатке пролина при атоме азота, образующем пептидную связь с другой аминокислотой, нет атома водорода.

Рис. 9. Остаток пролина препятствует образованию -спирали

Поэтому остаток пролина, входящий в состав полипептидной цепи, не способен образовывать внутрицепочечную водородную связь. Кроме того, атом азота в пролине входит в состав жесткого кольца, что делает невозможным вращение вокруг связи N – C и образование спирали.

Кроме α-спирали описаны и другие типы спиралей. Однако они встречаются редко, в основном на коротких участках.

Образование водородных связей между пептидными группами соседних полипептидных фрагментов цепей приводит к формированию β-структуры, или складчатого слоя:

В отличие от α-спирали складчатый слой имеет зигзагообразную форму, похожую на гармошку (рис. 10).

Рис. 10. β-Структура белка

Различают параллельные и антипараллельные складчатые слои. Параллельные β-структуры образуются между участками полипептидной цепи, направления которых совпадают:

Антипаралельные β-структуры образуются между противоположно направленными участками полипептидной цепи:


β-Структуры могут формироваться более чем между двумя полипептидными цепями:


В составе одних белков вторичная структура может быть представлена только α-спиралью, в других – только β-структурами (параллельными, или антипараллельными, или и теми, и другими), в третьих наряду с α-спирализованными участками могут присутствовать и β-структуры.

Третичная структура

У многих белков вторичноорганизованные структуры (α-спирали, -структуры) свернуты определенным образом в компактную глобулу. Пространственная организация глобулярных белков носит название третичной структуры. Таким образом, третичная структура характеризует трехмерное расположение участков полипептидной цепи в пространстве. В формировании третичной структуры принимают участие ионные и водородные связи, гидрофобные взаимодействия, ван-дер-ваальсовы силы. Стабилизируют третичную структуру дисульфидные мостики.

Третичная структура белков определяется их аминокислотной последовательностью. При ее формировании связи могут возникать между аминокислотами, расположенными в полипептидной цепи на значительном расстоянии. У растворимых белков полярные радикалы аминокислот, как правило, оказываются на поверхности белковых молекул и реже – внутри молекулы, гидрофобные радикалы оказываются компактно упакованными внутри глобулы, образуя гидрофобные области.

В настоящее время третичная структура многих белков установлена. Рассмотрим два примера.

Миоглобин

Миоглобин – кислород-связывающий белок с относительной массой 16700. Его функция – запасание кислорода в мышцах. В его молекуле имеется одна полипептидная цепь, состоящая из 153 аминокислотных остатков, и гемогруппа, играющая важную роль в связывании кислорода.

Пространственная организация миоглобина установлена благодаря работам Джона Кендрью и его коллег (рис. 11). В молекуле этого белка присутствуют 8 α-спиральных участков, на их долю приходится 80 % всех аминокислотных остатков. Молекула миоглобина очень компактна, внутри нее может уместиться всего четыре молекулы воды, почти все полярные радикалы аминокислот расположены на внешней поверхности молекулы, большая часть гидрофобных радикалов расположена внутри молекулы, вблизи поверхности находится гем – небелковая группа, ответственная за связывание кислорода.

Рис.11. Третичная структура миоглобина

Рибонуклеаза

Рибонуклеаза – глобулярный белок. Она секретируется клетками поджелудочной железы, это – фермент, катализирующий расщепление РНК. В отличие от миоглобина, в молекуле рибонуклеазы имеется очень мало α-спиральных участков и достаточно большое число сегментов, находящихся в β-конформации. Прочность третичной структуре белка придают 4 дисульфидные связи.

Четвертичная структура

Многие белки состоят из нескольких, двух или более, белковых субъединиц, или молекул, обладающих определенной вторичной и третичной структурами, удерживаемых вместе при помощи водородных и ионных связей, гидрофобных взаимодействий, ван-дер-ваальсовых сил. Такая организация белковых молекул носит название четвертичной структуры , а сами белки называют олигомерными . Отдельная субъединица, или белковая молекула, в составе олигомерного белка называется протомером .

Число протомеров в олигомерных белках может варьировать в широких пределах. Например, креатинкиназа состоит из 2 протомеров, гемоглобин – из 4 протомеров, РНК-полимераза E.coli – фермент, ответственный за синтез РНК, – из 5 протомеров, пируватдегидрогеназный комплекс – из 72 протомеров. Если белок состоит из двух протомеров, его называют димером, четырех – тетрамером, шести – гексамером (рис. 12). Чаще в молекуле олигомерного белка содержится 2 или 4 протомера. В состав олигомерного белка могут входить одинаковые или различные протомеры. Если в состав белка входят два идентичных протомера, то это – гомодимер , если разные – гетеродимер .


Рис. 12. Олигомерные белки

Рассмотрим организацию молекулы гемоглобина. Основная функция гемоглобина заключается в транспорте кислорода из легких в ткани и углекислого газа в обратном направлении. Его молекула (рис. 13) состоит из четырех полипептидных цепей двух различных типов – двух α-цепей и двух β-цепей и гема. Гемоглобин является белком, родственным миоглобину. Вторичная и третичная структуры миоглобина и протомеров гемоглобина очень сходны. Каждый протомер гемоглобина содержит, как и миоглобин, 8 α-спирализованных участков полипептидной цепи. При этом надо отметить, что в первичных структурах миоглобина и протомера гемоглобина идентичны только 24 аминокислотных остатка. Следовательно, белки, значительно отличающиеся по первичной структуре, могут иметь сходную пространственную организацию и выполнять сходные функции.

Рис. 13. Структура гемоглобина