Ряд стандартных электродных потенциалов (напряжений). Уравнение Нернста. Мир современных материалов - электрохимический ряд напряжений металлов Электрохимический ряд напряжений металлов кто открыл

металлов

В многих химических реакциях участвуют простые вещества, в частности металлы. Однако разные металлы проявляют разную активность в химических взаимодействиях, и от этого зависит, будет протекать реакция или нет.

Чем большая активность металла, тем энергичнее он реагирует с другими веществами. По активностью все металлы можно расположить в ряд, который называют рядом активности металлов, или вытеснительный ряд металлов, или рядом напряжений металлов, а также электрохимическим рядом напряжений металлов. Этот ряд впервые исследовал выдающийся украинский ученый М. М. Бекетов, поэтому этот ряд называют также рядом Бекетова.

Ряд активности металлов Бекетова имеет такой вид (приведены наиболее употребительные металлы):

К > Ca > Na > Mg > Al > Zn > Fe > Ni > Sn > Pb > >H 2 > Cu > Hg > Ag > Au.

В этом ряду металлы расположены с уменьшением их активности. Среди приведенных металлов наиболее активный калий, а наименее активный - золото. С помощью этого ряда можно определить, какой металл активнее от другого. Также в этом ряде присутствует водород. Конечно же, водород не является металлом, но в этом ряду его активность принята за точку отсчета (своеобразный ноль).

Взаимодействие металлов с водой

Металлы способны вытеснять водород не только из растворов кислот, но и из воды. Так же, как и с кислотами, активность взаимодействия металлов с водой увеличивается слева направо.

Металлы, стоящие в ряду активности до магния, способны реагировать с водой при обычных условий. При взаимодействии этих металлов образуются щелочи и водород, например:

Другие металлы, стоящие до водорода в ряду активностей, также могут взаимодействовать с водой, но это происходит в более жестких условиях. Для взаимодействия через раскаленные металлические опилки пропускают перегретый водяной пар. В таких условиях гидроксиды уже существовать не могут, поэтому продуктами реакции являются оксид соответствующего металлического элемента и водород:

Зависимость химических свойств металлов от места в ряду активности

активность металлов увеличивается

Вытесняют водород из кислот

Не вытесняют водород из кислот

Вытесняют водород из воды, образуют щелочи

Вытесняют водород из воды при высокой температуре, образуют оксиды

3 водой не взаимодействуют

С водного раствора соли вытеснить невозможно

Можно получить вытеснением более активным металлом из раствора соли или из расплава оксида

Взаимодействие металлов с солями

Если соль растворима в воде, то атом металлического элемента в ней может быть замещен атомом более активного элемента. Если погрузить в раствор купрум(ІІ) сульфата железную пластинку, то через некоторое время на ней выделится медь в виде красного налета:

Но если в раствор купрум(ІІ) сульфата погрузить серебряную пластину, то никакой реакции происходить не будет:

Купрум можно вытеснить любым металлом, который стоит левее в ряду активности металлов. Однако металлы, которые стоят в самом начале ряда,- натрий, калий и т.д. - для этого не пригодны, потому что они настолько активны, что будут взаимодействовать не с солью, а с водой, в которой эта соль растворена.

Вытеснение металлов из солей более активными металлами очень широко используют в промышленности для извлечения металлов.

Взаимодействие металлов с оксидами

Окислы металлических элементов способны взаимодействовать с металлами. Более активные металлы вытесняют менее активные из оксидов:

Но, в отличие от взаимодействия металлов с солями, в этом случае оксиды необходимо расплавить, чтобы реакция произошла. Для добыча металла из оксида можно использовать любой металл, что расположен в ряду активности левее, даже наиболее активный натрий и калий, ведь в расплавленном оксиде вода не содержится.

Взаимодействие металлов с оксидами используют в промышленности для извлечения других металлов. Наиболее практичный для этого метода металл - алюминий. Он достаточно широко распространен в природе и дешевый в производстве. Можно также использовать и более активные металлы (кальций, натрий, калий), но они, во-первых, дороже алюминия, а во-вторых, через сверхвысокую химическую активность их очень сложно сохранять на заводах. Такой способ извлечения металлов с использованием алюминия называют алюмінотермією.


Металлы, легко вступающие в реакции, называются активными металлами. К ним относятся щелочные, щелочноземельные металлы и алюминий.

Положение в таблице Менделеева

Металлические свойства элементов ослабевают слева направо в периодической таблице Менделеева. Поэтому наиболее активными считаются элементы I и II групп.

Рис. 1. Активные металлы в таблице Менделеева.

Все металлы являются восстановителями и легко расстаются с электронами на внешнем энергетическом уровне. У активных металлов всего один-два валентных электрона. При этом металлические свойства усиливаются сверху вниз с возрастанием количества энергетических уровней, т.к. чем дальше электрон находится от ядра атома, тем легче ему отделиться.

Наиболее активными считаются щелочные металлы:

  • литий;
  • натрий;
  • калий;
  • рубидий;
  • цезий;
  • франций.

К щелочноземельным металлам относятся:

  • бериллий;
  • магний;
  • кальций;
  • стронций;
  • барий;
  • радий.

Узнать степень активности металла можно по электрохимическому ряду напряжений металлов. Чем левее от водорода расположен элемент, тем более он активен. Металлы, стоящие справа от водорода, малоактивны и могут взаимодействовать только с концентрированными кислотами.

Рис. 2. Электрохимический ряд напряжений металлов.

К списку активных металлов в химии также относят алюминий, расположенный в III группе и стоящий левее водорода. Однако алюминий находится на границе активных и среднеактивных металлов и не реагирует с некоторыми веществами при обычных условиях.

Свойства

Активные металлы отличаются мягкостью (можно разрезать ножом), лёгкостью, невысокой температурой плавления.

Основные химические свойства металлов представлены в таблице.

Реакция

Уравнение

Исключение

Щелочные металлы самовозгораются на воздухе, взаимодействуя с кислородом

K + O 2 → KO 2

Литий реагирует с кислородом только при высокой температуре

Щелочноземельные металлы и алюминий на воздухе образуют оксидные плёнки, а при нагревании самовозгораются

2Ca + O 2 → 2CaO

Реагируют с простыми веществами, образуя соли

Ca + Br 2 → CaBr 2 ;
- 2Al + 3S → Al 2 S 3

Алюминий не вступает в реакцию с водородом

Бурно реагируют с водой, образуя щёлочи и водород


- Ca + 2H 2 O → Ca(OH) 2 + H 2

Реакция с литием протекает медленно. Алюминий реагирует с водой только после удаления оксидной плёнки

Реагируют с кислотами, образуя соли

Ca + 2HCl → CaCl 2 + H 2 ;

2K + 2HMnO 4 → 2KMnO 4 + H 2

Взаимодействуют с растворами солей, сначала реагируя с водой, а затем с солью

2Na + CuCl 2 + 2H 2 O:

2Na + 2H 2 O → 2NaOH + H 2 ;
- 2NaOH + CuCl 2 → Cu(OH) 2 ↓ + 2NaCl

Активные металлы легко вступают в реакции, поэтому в природе находятся только в составе смесей - минералов, горных пород.

Рис. 3. Минералы и чистые металлы.

Что мы узнали?

К активным металлам относятся элементы I и II групп - щелочные и щелочноземельные металлы, а также алюминий. Их активность обусловлена строением атома - немногочисленные электроны легко отделяются от внешнего энергетического уровня. Это мягкие лёгкие металлы, быстро вступающие в реакцию с простыми и сложными веществами, образуя оксиды, гидроксиды, соли. Алюминий находится ближе к водороду и для его реакции с веществами требуются дополнительные условия - высокие температуры, разрушение оксидной плёнки.

Тест по теме

Оценка доклада

Средняя оценка: 4.4 . Всего получено оценок: 334.


Понятно, что ничего не понятно.

Разберем более подробно процессы, которые могут происходить при погружении металлической пластины в раствор соли того же металла, из которого изготовлена и сама пластина, которую, в подобных случаях называют электродом .

Возможны два варианта.

Вариант 1 . Электрод изготовлен из металла, являющегося активным восстановителем (ему не "жалко" отдавать свои электроны), пусть это будет, скажем, цинк.

После того, как цинковый электрод погружается в раствор, диполи воды, присутствующие в растворе, начинают притягивать к себе определенную часть атомов цинка, которые переходят в раствор в виде гидратированных ионов, но при этом оставляют свои электроны на поверхности электрода.

Me 0 +mH 2 O → Me n+ ·mH 2 O+ne - Me 0 → Me n+ +ne -

Постепенно на поверхности цинкового электрода накапливается все больше и больше "брошенных" отрицательных электронов, - цинковый электрод приобретает отрицательный заряд. Параллельно с этим процессом в растворе увеличивается количество положительно заряженных ионов цинка, которые покинули электрод. Катионы цинка начинают притягиваться отрицательно заряженным электродом, в результате чего на границе электрод-раствор образуется так называемый двойной электрический слой (ДЭС).

Вариант 2. Электрод изготовлен из металла, который является слабым восстановителем (ему "жалко" расставаться со своими электронами). Пускай роль такого металла играет медь. Таким образом, ионы меди, содержащиеся в растворе, являются сильными окислителями. При погружении медного электрода в раствор часть ионов меди начинает контактировать с поверхностью электрода и восстанавливается за счет свободных электронов, присутствующих в меди.

Me n+ +ne - → Me 0

Идет процесс, обратный Варианту 1. Постепенно все больше и больше катионов меди осаждаются на поверхности электрода. Восстанавливаясь, катионы заряжают медную пластину положительно, по мере увеличения заряда положительный медный электрод все больше и больше притягивает отрицательно заряженных ионов, таким образом, формируется двойной электрический слой, но обратной полярности, чем это было в Варианте 1.

Формируемая на границе электрод-раствор разность потенциалов, называется электродным потенциалом .

Измерить такой потенциал очень сложно. Чтобы выйти из трудного положения, решили брать не абсолютные значения, а относительные, при этом в качестве эталона решили взять потенциал водородного электрода, принятый равным нулю.

Потенциал конкретного металлического электрода зависит от природы металла, концентрации и температуры раствора.

Поскольку щелочные и щелочноземельные металлы в водных растворах реагируют с водой - их электродным потенциалы рассчитывают теоретически.

Все металлы принято располагать в порядке возрастания значения их стандартного электродного потенциала - такой ряд называется электрохимическим рядом напряжений металлов :

Что показывает электродный потенциал

Электродный потенциал отражает в численном значении способность металла отдавать свои электроны или восстанавливаться, говоря другими словами, отражает химическую активность металла.

Чем левее в электрохимическом ряду стоит металл (см. выше), тем он легче отдает свои электроны, т.е., является более активным, легче вступает в реакции с другими элементами.

Если брать крайности, то:

  • литий самый сильный восстановитель, а ион лития - самый слабый окислитель;
  • золото самый слабый восстановитель, а ион золота - самый сильный окислитель.

Следствия, вытекающие из электрохимического ряда напряжений металлов:

  • Металл вытесняет из солей все другие металлы, стоящее в ряду правее него (являющиеся более слабыми восстановителями);
  • Металлы, имеющие отрицательное значение электродного потенциала, т.е., стоящие левее водорода, вытесняют его из кислот;
  • Самые активные металлы, имеющие самые низкие значения электродного потенциала (это металлы от лития до натрия), в водных растворах в первую очередь реагируют с водой.

Следует обратить внимание, что положение металлов в Периодической таблице и положение этих же металлов в электрохимическом ряду напряжений немного отличаются. Данный факт объясняет тем, что значение электродного потенциала зависит не только от энергии, необходимой для отрыва электронов от изолированного атома, но сюда входит также еще и энергия, требуемая для разрушения кристаллической решетки + энергия, которая выделяется при гидратации ионов.

Если из всего ряда стандартных электродных потенциалов выделить только те электродные процессы, которые отвечают общему уравнению

то получим ряд напряжений металлов. В этот ряд всегда помешают, кроме металлов, также водород, что позволяет видеть, какие металлы способны вытеснять водород из водных растворов кислот.

Таблица 19. Ряд напряжений металлов

Ряд напряжений для важнейших металлов приведен в табл. 19. Положение того или иного металла в ряду напряжений характеризует его способность к окислительно-восстановительным взаимодействиям в водных растворах при стандартных условиях. Ионы металлов являются окислителями, а металлы в виде простых веществ - восстановителями. При этом, чем дальше расположен металл в ряду напряжений, тем более сильным окислителем в водном растворе являются его ионы, и наоборот, чем ближе металл к началу ряда, тем более сильные восстановительные свойства проявляет простое вещество - металл.

Потенциал электродного процесса

в нейтральной среде равен В (см. стр. 273). Активные металлы начала ряда, имеющие потенциал, значительно более отрицательный, чем -0,41 В, вытесняют водород из воды. Магний вытесняет водород только из горячей воды. Металлы, расположенные между магнием и кадмием, обычно не вытесняют водород из воды. На поверхности этих металлов образуются оксидные пленки, обладающие защитным действием .

Металлы, расположенные между магнием и водородом, вытесняют водород из растворов кислот. При этом на поверхности некоторых металлов также образуются защитные пленки, тормозящие реакцию. Так, оксидная пленка на алюминии делает этот металл стойким не только в воде, но и в растворах некоторых кислот. Свинец не растворяется в серной кислоте при ее концентрации ниже , так как образующаяся при взаимодействии свинца с серной кислотой соль нерастворима и создает на поверхности металла защитную пленку. Явление глубокого торможения окисления металла, обусловленное наличием на его поверхности защитных оксидных или солевых пленок, называется пассивностью, а состояние металла при этом - пассивным состоянием.

Металлы способны вытеснять друг друга из растворов солей. Направление реакции определяется при этом их взаимным положением в ряду напряжений. Рассматривая конкретные случаи таких реакций, следует помнить, что активные металлы вытесняют водород не только из воды, но и из любого водного раствора. Поэтому взаимное вытеснение металлов из растворов их солей практически происходит лишь в случае металлов, расположенных в ряду после магния.

Вытеснение металлов из их соединений другими металлами впервые подробно изучал Бекетов. В результате своих работ он расположил металлы по их химической активности в вытеснительный ряд», являющийся прототипом ряда напряжений металлов.

Взаимное положение некоторых металлов в ряду напряжений и в периодической системе на первый взгляд не соответствует друг, другу. Например, согласно положению в периодической системе химическая активность калия должна быть больше, чем натрия, а натрия - больше, чем лития. В ряду же напряжений наиболее активным оказывается литий, а калий занимает среднее положение между литием и натрием. Цинк и медь по их положению в периодической системе должны иметь приблизительно равную химическую активность, но в ряду напряжений цинк расположен значительно раньше меди. Причина такого рода несоответствий состоит в следующем.

При сравнении металлов, занимающих то или иное положение в периодической системе, за меру их химической активности - восстановительной способности - принимается величина энергии ионизации свободных атомов. Действительно, при переходе, например, сверху вниз по главной подгруппе I группы периодической системы энергия ионизации атомов уменьшается, что связано с увеличением их радиусов (т. е. с большим удалением внешних электронов от ядра) и с возрастающим экранированием положительного заряда ядра промежуточными электронными слоями (см. § 31). Поэтому атомы калия проявляют большую химическую активность - обладают более сильными восстановительными свойствами, - чем атомы натрия, а атомы натрия - большую активность, чем атомы лития.

При сравнении же металлов в ряду напряжений за меру химической активности принимается работа превращения металла, находящегося в твердом состоянии, в гидратированные ионы в водном растворе. Эту работу можно представить как сумму трех слагаемых: энергии атомизации - превращения кристалла металла в изолированные атомы, энергии ионизации свободных атомов металла и энергии гидратации образующихся ионов. Энергия атомизации характеризует прочность кристаллической решетки данного металла. Энергия ионизации атомов - отрыва от них валентных электронов - непосредственно определяется положением металла в периодической системе. Энергия, выделяющаяся при гидратации, зависит от электронной структуры иона, его заряда и радиуса.

Ионы лития и калия, имеющие одинаковый заряд, но различные радиусы, будут создавать около себя неодинаковые электрические поля. Поле, возникающее вблизи маленьких ионов лития, будет более сильным, чем поле около больших ионов калия. Отсюда ясно, что ионы лития будут гидратироваться с выделением большей энергии, чем ноны калия.

Таким образом, в ходе рассматриваемого превращения затрачивается энергия на атомизацию и ионизацию и выделяется энергия при гидратации. Чем меньше будет суммарная затрата энергии, тем легче будет осуществляться весь процесс и тем ближе к началу ряда напряжений будет располагаться данный металл. Но из трех слагаемых общего баланса энергии только одно - энергия ионизации-непосредственно определяется положением металла в периодической системе. Следовательно, нет оснований ожидать, что взаимное положение тех или иных металлов в ряду напряжений всегда будет соответствовать их положению в периодической системе. Так, для лития суммарная затрата энергии оказывается меньшей, чем для калия, в соответствии с чем литий стоит в ряду напряжений раньше калия.

Для меди и цинка затрата энергии на ионизацию свободных атомов и выигрыш ее при гидратации ионов близки. Но металлическая медь образует более прочную кристаллическую решетку, чем цинк, что видно из сопоставления температур плавления этих Металлов: цинк плавится при , а медь только при . Поэтому энергия, затрачиваемая на атомизацию этих металлов, существенно различна, вследствие чего суммарные энергетические затраты на весь процесс в случае меди гораздо больше, чем в случае цинка, что и объясняет взаимное положение этих металлов в ряду напряжений.

При переходе от воды к неводным растворителям взаимное положение металлов в ряду напряжений может изменяться. Причина этого лежит в том, что энергия сольватации ионов различных металлов по-разному изменяется при переходе от одного растворителя к другому.

В частности, ион меди весьма энергично сольватируется в некоторых органических растворителях; это приводит к тому, что в таких растворителях медь располагается в ряду напряжений до водорода и вытесняет его из растворов кислот.

Таким образом, в отличие от периодической системы элементов, ряд напряжений металлов не является отражением общей Закономерности, на основе которой можно давать разностороннюю Характеристику химических свойств металлов. Ряд напряжений Характеризует лишь окислительно-восстановительную способность Электрохимической системы «металл - ион металла» в строго определенных условиях: приведенные в нем величины относятся к водному раствору, температуре и единичной концентрации (активности) ионов металла.


Гроссе Э., Вайсмантель X.

Химия для любознательных. Основы химии и занимательные опыты.

Глава 3 (продолжение)

НЕБОЛЬШОЙ КУРС ЭЛЕКТРОХИМИИ МЕТАЛЛОВ

Мы уже познакомились с электролизом растворов хлоридов щелочных металлов и получением металлов с помощью расплавов. Сейчас попробуем на нескольких несложных опытах изучить некоторые закономерности электрохимии водных растворов, гальванических элементов, а также познакомиться с получением защитных гальванических покрытий.
Электрохимические методы применяются в современной аналитической химии, служат для определения важнейших величин теоретической химии.
Наконец, коррозия металлических предметов, которая наносит большой урон народному хозяйству, в большинстве случаев является электрохимическим процессом.

РЯД НАПРЯЖЕНИЯ МЕТАЛЛОВ

Основополагающим звеном для понимания электрохимических процессов является ряд напряжения металлов. Металлы можно расположить в ряд, который начинается с химически активных и заканчивается наименее активными благородными металлами:
Li, Rb, К, Ва, Sr, Са, Mg, Al, Be, Mn, Zn, Cr, Ga, Fe, Cd, Tl, Co, Ni, Sn, Pb, H, Sb, Bi, As, Cu, Hg, Ag, Pd, Pt, Au .
Так выглядит, по новейшим представлениям, ряд напряжений для важнейших металлов и водорода. Если из двух любых металлов ряда изготовить электроды гальванического элемента, то на предшествующем в ряду материале появится отрицательное напряжение.
Величина напряжения (электрохимический потенциал ) зависит от положения элемента в ряду напряжении и от свойств электролита.
Сущность ряда напряжения установим из нескольких простых опытов, для которых нам понадобятся источник тока и электрические измерительные приборы. Растворим около 10 г кристаллического сульфата меди в 100 мл воды и погрузим в раствор стальную иглу или кусочек железной жести. (Рекомендуем предварительно до блеска зачистить железо тонкой наждачной шкуркой.) Через короткое время железо покроется красноватым слоем выделившейся меди. Более активное железо вытесняет медь из раствора, причем железо растворяется в виде ионов, а медь выделяется в виде металла. Процесс продолжается до тех пор, пока раствор находится в контакте с железом. Как только медь покроет всю поверхность железа, он практически прекратится. В этом случае образуется довольно пористый слой меди, так что защитные покрытия без применения тока получать нельзя.
В следующих опытах опустим в раствор сульфата меди небольшие полоски цинковой и свинцовой жести. Через 15 минут вытащим их, промоем и исследуем под микроскопом. Мы различим красивые, похожие на ледяные, узоры, которые в отраженном свете имеют красную окраску и состоят из выделившейся меди. Здесь также более активные металлы перевели медь из ионного в металлическое состояние.
В свою очередь, медь может вытеснять металлы, стоящие ниже в ряду напряжений, то есть менее активные. На тонкую полоску листовой меди или на расплющенную медную проволоку (предварительно зачистив поверхность до блеска) нанесем несколько капель раствора нитрата серебра. Невооруженным взглядом можно будет заметить образовавшийся черноватый налет, который под микроскопом в отраженном свете имеет вид тонких игл и растительных узоров (так называемых дендритов).
Чтобы выделить цинк без тока, необходимо применить более активный металл. Исключая металлы, которые бурно взаимодействуют с водой, находим в ряду напряжений выше цинка магний. Несколько капель раствора сульфата цинка поместим на кусок магниевой ленты или на тонкую стружку электрона. Раствор сульфата цинка получим, растворив кусочек цинка в разбавленной серной кислоте. Одновременно с сульфатом цинка добавим несколько капель денатурата. На магнии через короткий промежуток времени заметим, особенно под микроскопом, выделившийся в виде тонких кристалликов цинк.
В общем, любой член ряда напряжения может быть вытеснен из раствора, где он находится в виде иона, и переведен в металлическое состояние. Однако при испытании всевозможных комбинаций, нас может постичь разочарование. Казалось бы, если полоску алюминия погрузить в растворы солей меди, железа, свинца и цинка, на ней должны выделяться эти металлы. Но этого, однако, не происходит. Причина неудачи кроется не в ошибке в ряду напряжений, а основана на особом торможении реакции, которое в данном случае обусловлено тонкой оксидной пленкой на поверхности алюминия. В таких растворах алюминий называют пассивным.

ЗАГЛЯНЕМ ЗА КУЛИСЫ

Чтобы сформулировать закономерности протекающих процессов, мы можем ограничиться рассмотрением катионов, а анионы исключить, так как они сами в реакции не участвуют. (Правда, на скорость осаждения влияет вид анионов.) Если для простоты предположить, что и выделяющийся и растворенный металлы дают двухзарядные катионы, то можно записать:

Me 1 + Me 2 2+ = Ме 1 2+ + Ме 2

Причем для первого опыта Ме 1 = Fe, Me 2 = Сu.
Итак, процесс состоит в обмене зарядами (электронами) между атомами и ионами обоих металлов. Если отдельно рассматривать (в качестве промежуточных реакций) растворение железа или осаждение меди, то получим:

Fe = Fe 2+ + 2е --

Сu 2+ + 2е -- = Сu

Теперь рассмотрим случай, когда металл погружен в воду или в раствор соли, с катионом которой обмен невозможен из-за его положения в ряду напряжений. Несмотря на это, металл стремится перейти в раствор в виде иона. При этом атом металла отдает два электрона (если металл двухвалентный), поверхность погруженного в раствор металла заряжается по отношению к раствору отрицательно, а на границе раздела образуется двойной электрический слой. Эта разность потенциалов препятствует дальнейшему растворению металла, так что процесс вскоре приостанавливается.
Если в раствор погрузить два различных металла, то они оба зарядятся, но менее активный - несколько слабее, в силу того, что его атомы менее склонны к отщеплению электронов.
Соединим оба металла проводником. Вследствие разности потенциалов поток электронов потечет от более активного металла к менее активному, который образует положительный полюс элемента. Протекает процесс, при котором более активный металл переходит в раствор, а катионы из раствора выделяются на более благородном металле. Проиллюстрируем теперь несколькими опытами приведенные выше несколько абстрактные рассуждения (которые к тому же представляют собой грубое упрощение).
Сначала наполним химический стакан вместимостью 250 мл до середины 10%-ным раствором серной кислоты и погрузим в нее не слишком маленькие куски цинка и меди. К обоим электродам припаяем или приклепаем медную проволоку, концы которой не должны касаться раствора.
Пока концы проволоки не соединены друг с другом, мы будем наблюдать растворение цинка, которое сопровождается выделением водорода. Цинк, как следует из ряда напряжения, активнее водорода, поэтому металл может вытеснять водород из ионного состояния. На обоих металлах образуется двойной электрический слой. Разность потенциалов между электродами проще всего обнаружить с помощью вольтметра. Непосредственно после включения прибора в цепь стрелка укажет примерно 1 В, но затем напряжение быстро упадет. Если подсоединить к элементу маленькую лампочку, потребляющую напряжение 1 В, то она загорится - сначала довольно сильно, а затем накал станет слабым.
По полярности клемм прибора можно сделать вывод, что медный электрод является положительным полюсом. Это можно доказать и без прибора, рассмотрев электрохимию процесса. Приготовим в маленьком химическом стакане или в пробирке насыщенный раствор поваренной соли, добавим примерно 0,5 мл спиртового раствора индикатора фенолфталеина и погрузим оба замкнутых проволокой электрода в раствор. Около отрицательного полюса будет наблюдаться слабое красноватое окрашивание, которое вызвано образованием на катоде гидроксида натрия.
В других опытах можно помещать в ячейку различные пары металлов и определять возникающее напряжение. Например, магний и серебро дадут особенно большую разность потенциалов благодаря значительному расстоянию между ними ряду напряжений, а цинк и железо, наоборот, очень маленькую, менее десятой доли вольта. Применяя алюминий, мы не получим из-за пассивации практически никакого тока.
Все эти элементы, или, как говорят электрохимики, цепи, имеют тот недостаток, что при съемке тока на них очень быстро падает напряжение. Поэтому электрохимики всегда измеряют истинную величину напряжения в обесточенном состоянии с помощью метода компенсации напряжения, то есть сравнивая его с напряжением другого источника тока.
Рассмотрим процессы в медно-цинковом элементе несколько подробнее. На катоде цинк переходит в раствор по следующему уравнению:

Zn = Zn 2+ + 2е --

На медном аноде разряжаются ионы водорода серной кислоты. Они присоединяют электроны, поступающие по проволоке от цинкового катода и в результате образуются пузырьки водорода:

2Н + + 2е -- = Н 2

Через короткий промежуток времени медь покроется тончайшим слоем пузырьков водорода. При этом медный электрод превратится в водородный, а разность потенциалов уменьшится. Этот процесс называют поляризацией электрода. Поляризацию медного электрода можно устранить, добавив в ячейку после падения напряжения немного раствора дихромата калия. После этого напряжение опять увеличится, так как дихромат калия окислит водород до воды. Бихромат калия действует в этом случае как деполяризатор.
На практике применяют гальванические цепи, электроды которых не поляризуются, или цепи, поляризацию которых можно устранить, добавив деполяризаторы.
В качестве примера неполяризуемого элемента рассмотрим элемент Даниэля, который раньше часто использовали как источник тока. Это тоже медно-цинковый элемент, но оба металла погружены в различные растворы. Цинковый электрод помещается в пористой глиняной ячейке, наполненной разбавленной (примерно 20%-ной) серной кислотой. Глиняную ячейку подвешивают в большом стакане, в котором находится концентрированный раствор сульфата меди, а на дне - слой кристаллов сульфата меди. Вторым электродом в этом сосуде служит цилиндр из медного листа.
Этот элемент можно изготовить из стеклянной банки, имеющейся в продаже глиняной ячейки (в крайнем случае используем цветочный горшок, закрыв отверстие в дне) и двух подходящих по размеру электродов.
В процессе работы элемента цинк растворяется с образованием сульфата цинка, а на медном электроде выделяются ионы меди. Но при этом медный электрод не поляризуется и элемент дает напряжение около 1 В. Собственно, теоретически напряжение на клеммах составляет 1,10 В, но при съеме тока мы измеряем несколько меньшую величину, вследствие электрического сопротивления ячейки.
Если мы не снимем ток с элемента, нужно вытащить цинковый электрод из раствора серной кислоты, потому что иначе он будет растворяться с образованием водорода.
Схема простой ячейки, для которой не требуется пористой перегородки, показана на рисунке. Цинковый электрод расположен в стеклянной банке наверху, а медный - вблизи дна. Вся ячейка наполнена насыщенным раствором поваренной соли. На дно банки насыплем горсть кристаллов сульфата меди. Образующийся концентрированный раствор сульфата меди будет смешиваться с раствором поваренной соли очень медленно. Поэтому при работе элемента на медном электроде будет выделяться медь, а в верхней части ячейки будет растворяться цинк в виде сульфата или хлорида.
Сейчас для батарей используют почти исключительно сухие элементы, которые более удобны в употреблении. Их родоначальником является элемент Лекланше. Электродами служат цинковый цилиндр и угольный стержень. Электролит представляет собой пасту, которая в основном состоит из хлорида аммония. Цинк растворяется в пасте, а на угле выделяется водород. Чтобы избежать поляризации, угольный стержень опускают в полотняный мешочек со смесью из угольного порошка и пиролюзита. Угольный порошок увеличивает поверхность электрода, а пиролюзит действует как деполяризатор, медленно окисляя водород.
Правда, деполяризующая способность пиролюзита слабее, чем у упоминавшегося ранее дихромата калия. Поэтому при получении тока в сухих элементах напряжение быстро падает, они "утомляются " вследствие поляризации. Только через некоторое время происходит окисление водорода пиролюзитом. Таким образом, элементы "отдыхают ", если некоторое время не пропускать ток. Проверим это на батарейке для карманного фонарика, к которой подсоединим лампочку. Параллельно лампе, то есть непосредственно на клеммы, подключим вольтметр.
Сначала напряжение составит около 4,5 В. (Чаще всего в таких батарейках последовательно включены три ячейки, каждая с теоретическим напряжением 1,48 В.) Через некоторое время напряжение упадет, накал лампочки ослабеет. По показаниям вольтметра мы сможет судить, как долго батарейке нужно отдыхать.
Особое место занимают регенерирующие элементы, известные под названием аккумуляторы . В них протекают обратимые реакции, и их можно перезаряжать после разрядки элемента, подключив к внешнему источнику постоянного тока.
В настоящее время наиболее распространены свинцовые аккумуляторы; в них электролитом служит разбавленная серная кислота, куда погружены две свинцовые пластины. Положительный электрод покрыт диоксидом свинца PbO 2 , отрицательный представляет собой металлический свинец. Напряжение на клеммах составляет примерно 2,1 В. При разрядке на обеих пластинах образуется сульфат свинца, который опять превращается при зарядке в металлический свинец и в пероксид свинца.

НАНЕСЕНИЕ ГАЛЬВАНИЧЕСКИХ ПОКРЫТИЙ

Осаждение металлов из водных растворов с помощью электрического тока является процессом, обратным электролитическому растворению, с которым мы познакомились при рассмотрении гальванических элементов. Прежде всего исследуем осаждение меди, которое используют в медном кулонометре для измерения количества электричества.

Металл осаждается током

Отогнув концы двух пластин из тонкой листовой меди, подвесим их на противоположных стенках химического стакана или, лучше, маленького стеклянного аквариума. Клеммами прикрепим к пластинам провода.
Электролит приготовим по следующему рецепту: 125 г кристаллического сульфата меди, 50 г концентрированной серной кислоты и 50 г спирта (денатурата), остальное - вода до 1 литра. Для этого сначала растворим сульфат меди в 500 мл воды, затем осторожно, маленькими порциями добавим серную кислоту (Нагревание! Жидкость может разбрызгиваться! ), после этого вольем спирт и доведем водой до объема 1 л.
Готовым раствором наполним кулонометр и включим в цепь переменное сопротивление, амперметр и свинцовый аккумулятор. С помощью сопротивления отрегулируем ток таким образом, чтобы его плотность составила 0,02-0,01 А/см 2 поверхности электродов. Если медная пластина имеет площадь 50 см 2 , то сила тока должна находиться в пределах 0,5-1 А.
Через некоторое время на катоде (отрицательный электрод) начнет выделяться светло-красная металлическая медь, а на аноде (положительный электрод) медь будет переходить в раствор. Чтобы очистить медные пластины, будем пропускать ток в кулонометре около получаса. Затем вытащим катод, осторожно высушим его с помощью фильтровальной бумаги и точно взвесим. Установим в ячейке электрод, замкнем цепь с помощью реостата и будем поддерживать постоянную силу тока, например 1 А. Через час разомкнем цепь и опять взвесим высушенный катод. При токе 1 А за час работы его масса увеличится на 1,18 г.
Следовательно, количество электричества, равное 1 ампер-часу, при прохождении через раствор может выделить 1,18 г меди. Или в общем: выделившееся количество вещества прямо пропорционально количеству прошедшего через раствор электричества.
Чтобы выделить 1 эквивалент иона, необходимо пропустить через раствор количество электричества, равное произведению заряда электрода е на число Авогадро N A:
е*N A = 1,6021 * 10 -19 * 6,0225*10 23 = 9,65*10 4 А*с*моль -1 Эта величина обозначается символом F и называется в честь первооткрывателя количественных законов электролиза числом Фарадея (точное значение F - 96 498 А*с*моль -1). Следовательно, для выделения из раствора данного числа эквивалентов n э через раствор следует пропустить количество электричества, равное F*n э А*с*моль -1 . Иначе говоря,
I*t = F*n э Здесь I - ток, t - время прохождения тока через раствор. В разделе "Основы титрования " уже было показано, что число эквивалентов вещества n э равно произведению числа молей на эквивалентное число:
n э = n *Z Следовательно:

I *t = F*n*Z

В данном случае Z - заряд ионов (для Ag + Z = 1, для Cu 2+ Z = 2, для Al 3+ Z = 3 и т. д.). Если выразить число молей в виде отношения массы к мольной массе (n = m / М ), то мы получим формулу, которая позволяет рассчитать все процессы, происходящие при электролизе:

I*t = F*m*Z / M

По этой формуле можно вычислить ток:

I = F*m*Z/(t*M) = 9,65*10 4 *1,18*2 / (3600*63,54) А*с*г*моль/(с*моль*г) = 0,996 А

Если ввести соотношение для электрической работы W эл

W эл = U*I*t и W эл /U = I*t

То, зная напряжение U , можно вычислить:

W эл = F*m*Z*U/M

Можно также рассчитать, сколько времени необходимо для электролитического выделения определенного количества вещества или сколько вещества выделится за определенное время. Во время опыта плотность тока необходимо поддерживать в заданных пределах. Если она будет меньше 0,01 А/см 2 , то выделится слишком мало металла, так как будут частично образовываться ионы меди(I). При слишком высокой плотности тока сцепление покрытия с электродом будет слабым и при извлечении электрода из раствора оно может осыпаться.
На практике гальванические покрытия на металлах применяют прежде всего для защиты от коррозии и для получения зеркального блеска.
Кроме того, металлы, особенно медь и свинец, очищают с помощью анодного растворения и последующего выделения на катоде (электролитическое рафинирование).
Чтобы покрыть железо медью или никелем, необходимо сначала тщательно очистить поверхность предмета. Для этого отполируем ее отмученным мелом и последовательно обезжирим разбавленным раствором едкого натра, водой и спиртом. Если предмет покрыт ржавчиной, надо протравить его заранее в 10-15%-ном растворе серной кислоты.
Очищенное изделие подвесим в электролитической ванне (маленький аквариум или химический стакан), где оно будет служить в качестве катода.
Раствор для нанесения медного покрытия содержит в 1 л воды 250 г сульфата меди и 80-100 г концентрированной серной кислоты (Осторожно! ). В данном случае анодом будет служить медная пластинка. Поверхность анода примерно должна быть равна поверхности покрываемого предмета. Поэтому надо всегда следить, чтобы медный анод висел в ванне на такой же глубине, как и катод.
Процесс будем проводить при напряжении 3-4 В (две аккумуляторные батареи) и плотности тока 0,02-0,4 А/см 2 . Температура раствора в ванне должна составлять 18-25 °С.
Обратим внимание на то, чтобы плоскость анода и покрываемая поверхность были параллельны друг другу. Предметы сложной формы лучше не использовать. Варьируя длительность электролиза, можно получать медное покрытие разной толщины.
Часто прибегают к предварительному меднению для того, чтобы на этот слой нанести прочное покрытие из другого металла. Особенно часто это применяется при хромировании железа, никелировании цинкового литья и в других случаях. Правда, для этой цели используют очень ядовитые цианидные электролиты.
Для приготовления электролита для никелирования в 450 мл воды растворим 25 г кристаллического сульфата никеля, 10 г борной кислоты или 10 г цитрата натрия. Цитрат натрия можно приготовить самим, нейтрализовав раствор 10 г лимонной кислоты разбавленным раствором едкого натра или раствором соды. Анодом пусть будет пластина никеля возможно большей площади, а в качестве источника напряжения возьмем аккумулятор.
Величину плотности тока с помощью переменного сопротивления будем поддерживать равной 0,005 А/см 2 . Например, при поверхности предмета 20 см 2 надо работать при силе тока 0,1 А. После получаса работы предмет будет уже отникелирован. Вытащим его из ванны и протрем тканью. Впрочем, процесс никелирования лучше не прерывать, так как тогда слой никеля может запассивироваться и последующее никелевое покрытие будет плохо держаться.
Чтобы достичь зеркального блеска без механической полировки, введем в гальваническую ванну так называемую блескообразующую добавку. Такими добавками служат, например, клей, желатина, сахар. Можно ввести в никелевую ванну, например, несколько граммов сахара и изучить его действие.
Чтобы приготовить электролит для хромирования железа (после предварительного меднения), в 100 мл воды растворим 40 г ангидрида хромовой кислоты СrО 3 (Осторожно! Яд! ) и точно 0,5 г серной кислоты (ни в коем случае не больше!). Процесс протекает при плотности тока около 0,1 А/см 2 , а в качестве анода используется свинцовая пластина, площадь которой должна быть несколько меньше площади хромируемой поверхности.
Никелевые и хромовые ванны лучше всего слегка подогреть (примерно до 35 °С). Обратим внимание на то, что электролиты для хромирования, особенно при длительном процессе и высокой силе тока, выделяют содержащие хромовую кислоту пары, которые очень вредны для здоровья. Поэтому хромирование следует проводить под тягой или на открытом воздухе, например на балконе.
При хромировании (а в меньшей степени и при никелировали) не весь ток используется на осаждение металла. Одновременно выделяется водород. На основании ряда напряжений следовало бы ожидать, что металлы, стоящие перед водородом, вообще не должны выделяться из водных растворов, а напротив должен был бы выделяться менее активный водород. Однако здесь, как и при анодном растворении металлов, катодное выделение водорода часто тормозится и наблюдается только при высоком напряжении. Это явление называют перенапряжением водорода, и оно особенно велико, например, на свинце. Благодаря этому обстоятельству может функционировать свинцовый аккумулятор. При зарядке аккумулятора вместо РbО 2 на катоде должен бы возникать водород, но, благодаря перенапряжению, выделение водорода начинается тогда, когда аккумулятор почти полностью заряжен.