Как рассчитать силу натяжения в физике. Решение задач на движение системы связанных тел Модуль силы натяжения троса формула

В физике, сила натяжения - это сила, действующая на веревку, шнур, кабель или похожий объект или группу объектов. Все, что натянуто, подвешено, поддерживается или качается на веревке, шнуре, кабеле и так далее, является объектом силы натяжения. Подобно всем силам, натяжение может ускорять объекты или становиться причиной их деформации. Умение рассчитывать силу натяжения является важным навыком не только для студентов физического факультета, но и для инженеров, архитекторов; те, кто строит устойчивые дома, должны знать, выдержит ли определенная веревка или кабель силу натяжения от веса объекта так, чтобы они не проседали и не разрушались. Приступайте к чтению статьи, чтобы научиться рассчитывать силу натяжения в некоторых физических системах.

Шаги

Определение силы натяжения на одной нити

  1. Определите силы на каждом из концов нити. Сила натяжения данной нити, веревки является результатом сил, натягивающих веревку с каждого конца. Напоминаем, сила = масса × ускорение . Предполагая, что веревка натянута туго, любое изменение ускорения или массы объекта, подвешенного на веревке, приведет к изменению силы натяжения в самой веревке. Не забывайте о постоянном ускорении силы тяжести - даже если система находится в покое, ее составляющие являются объектами действия силы тяжести. Мы можем предположить, что сила натяжения данной веревки это T = (m × g) + (m × a), где «g» - это ускорение силы тяжести любого из объектов, поддерживаемых веревкой, и «а» - это любое другое ускорение, действующее на объекты.

    • Для решения множества физических задач, мы предполагаем идеальную веревку - другими словами, наша веревка тонкая, не обладает массой и не может растягиваться или рваться.
    • Для примера, давайте рассмотрим систему, в которой груз подвешен к деревянной балке с помощью одной веревки (смотрите на изображение). Ни сам груз, ни веревка не двигаются - система находится в покое. Вследствие этого, нам известно, чтобы груз находился в равновесии, сила натяжения должна быть равна силе тяжести. Другими словами, Сила натяжения (F t) = Сила тяжести (F g) = m × g.
      • Предположим, что груз имеет массу 10 кг, следовательно, сила натяжения равна 10 кг × 9,8 м/с 2 = 98 Ньютонов.
  2. Учитывайте ускорение. Сила тяжести - не единственная сила, что может влиять на силу натяжения веревки - такое же действие производит любая сила, приложенная к объекту на веревке с ускорением. Если, к примеру, подвешенный на веревке или кабеле объект ускоряется под действием силы, то сила ускорения (масса × ускорение) добавляется к силе натяжения, образованной весом этого объекта.

    • Предположим, что в нашем примере на веревку подвешен груз 10 кг, и вместо того, чтобы быть прикрепленным к деревянной балке, его тянут вверх с ускорением 1 м/с 2 . В этом случае, нам необходимо учесть ускорение груза, также как и ускорение силы тяжести, следующим образом:
      • F t = F g + m × a
      • F t = 98 + 10 кг × 1 м/с 2
      • F t = 108 Ньютонов.
  3. Учитывайте угловое ускорение. Объект на веревке, вращающийся вокруг точки, которая считается центром (как маятник), оказывает натяжение на веревку посредством центробежной силы. Центробежная сила - дополнительная сила натяжения, которую вызывает веревка, «толкая» ее внутрь так, чтобы груз продолжал двигаться по дуге, а не по прямой. Чем быстрее движется объект, тем больше центробежная сила. Центробежная сила (F c) равна m × v 2 /r где «m»– это масса, «v» - это скорость, и «r» - радиус окружности, по которой движется груз.

    • Так как направление и значение центробежной силы меняются в зависимости от того, как объект движется и меняет свою скорость, то полное натяжение веревки всегда параллельно веревке в центральной точке. Запомните, что сила притяжения постоянно действует на объект и тянет его вниз. Так что, если объект раскачивается вертикально, полное натяжение сильнее всего в нижней точке дуги (для маятника это называется точкой равновесия), когда объект достигает максимальной скорости, и слабее всего в верхней точке дуги, когда объект замедляется.
    • Давайте предположим, что в нашем примере объект больше не ускоряется вверх, а раскачивается как маятник. Пусть наша веревка будет длиной 1,5 м, а наш груз движется со скоростью 2 м/с, при прохождении через нижнюю точку размаха. Если нам нужно рассчитать силу натяжения в нижней точке дуги, когда она наибольшая, то сначала надо выяснить равное ли давление силы тяжести испытывает груз в этой точке, как и при состоянии покоя - 98 Ньютонов. Чтобы найти дополнительную центробежную силу, нам необходимо решить следующее:
      • F c = m × v 2 /r
      • F c = 10 × 2 2 /1.5
      • F c =10 × 2,67 = 26,7 Ньютонов.
      • Таким образом, полное натяжение будет 98 + 26,7 = 124,7 Ньютона.
  4. Учтите, что сила натяжения благодаря силе тяжести меняется по мере прохождения груза по дуге. Как было отмечено выше, направление и величина центробежной силы меняются по мере того, как качается объект. В любом случае, хотя сила тяжести и остается постоянной, результирующая сила натяжения в результате тяжести тоже меняется. Когда качающийся объект находится не в нижней точке дуги (точке равновесия), сила тяжести тянет его вниз, но сила натяжения тянет его вверх под углом. По этой причине сила натяжения должна противодействовать части силы тяжести, а не всей ее полноте.

    • Разделение силы гравитации на два вектора сможет помочь вам визуально изобразить это состояние. В любой точке дуги вертикально раскачивающегося объекта, веревка составляет угол «θ» с линией, проходящей через точку равновесия и центр вращения. Как только маятник начинает раскачиваться, сила гравитации (m × g) разбивается на 2 вектора - mgsin(θ), действуя по касательной к дуге в направлении точки равновесия и mgcos(θ), действуя параллельно силе натяжения, но в противоположном направлении. Натяжение может только противостоять mgcos(θ) - силе, направленной против нее - не всей силе тяготения (исключая точку равновесия, где все силы одинаковы).
    • Давайте предположим, что, когда маятник отклоняется на угол 15 градусов от вертикали, он движется со скоростью 1,5 м/с. Мы найдем силу натяжения следующими действиями:
      • Отношение силы натяжения к силе тяготения (T g) = 98cos(15) = 98(0,96) = 94,08 Ньютона
      • Центробежная сила (F c) = 10 × 1,5 2 /1,5 = 10 × 1,5 = 15 Ньютонов
      • Полное натяжение = T g + F c = 94,08 + 15 = 109,08 Ньютонов.
  5. Рассчитайте трение. Любой объект, который тянется веревкой и испытывает силу «торможения» от трения другого объекта (или жидкости), передает это воздействие натяжению в веревке. Сила трения между двумя объектами рассчитывается также, как и в любой другой ситуации - по следующему уравнению: Сила трения (обычно пишется как F r) = (mu)N, где mu - это коэффициент силы трения между объектами и N - обычная сила взаимодействия между объектами, или та сила, с которой они давят друг на друга. Отметим, что трение покоя - это трение, которое возникает в результате попытки привести объект, находящийся в покое, в движение - отличается от трения движения - трения, возникающего в результате попытки заставить движущийся объект продолжать движение.

    • Давайте предположим, что наш груз в 10 кг больше не раскачивается, теперь его буксируют по горизонтальной плоскости с помощью веревки. Предположим, что коэффициент трения движения земли равен 0,5 и наш груз движется с постоянной скоростью, но нам нужно придать ему ускорение 1м/с 2 . Эта проблема представляет два важных изменения - первое, нам больше не нужно рассчитывать силу натяжения по отношению к силе тяжести, так как наша веревка не удерживает груз на весу. Второе, нам придется рассчитать натяжение, обусловленное трением, также как и вызванное ускорением массы груза. Нам нужно решить следующее:
      • Обычная сила (N) = 10 кг & × 9,8 (ускорение силы тяжести) = 98 N
      • Сила трения движения (F r) = 0,5 × 98 N = 49 Ньютонов
      • Сила ускорения (F a) = 10 kg × 1 м/с 2 = 10 Ньютонов
      • Общее натяжение = F r + F a = 49 + 10 = 59 Ньютонов.

    Расчет силы натяжения на нескольких нитях

    1. Поднимите вертикальные параллельные грузы с помощью блока. Блоки - это простые механизмы, состоящие из подвесного диска, что позволяет менять направление силы натяжения веревки. В простой конфигурации блока, веревка или кабель идет от подвешенного груза вверх к блоку, затем вниз к другому грузу, создавая тем самым два участка веревки или кабеля. В любом случае натяжение в каждом из участков будет одинаковым, даже если оба конца будут натягиваться силами разных величин. Для системы двух масс, подвешенных вертикально в блоке, сила натяжения равна 2g(m 1)(m 2)/(m 2 +m 1), где «g» - ускорение силы тяжести, «m 1 » - масса первого объекта, «m 2 »– масса второго объекта.

      • Отметим следующее, физические задачи предполагают, что блоки идеальны - не имеют массы, трения, они не ломаются, не деформируются и не отделяются от веревки, которая их поддерживает.
      • Давайте предположим, что у нас есть два вертикально подвешенных на параллельных концах веревки груза. У одного груза масса 10 кг, а у второго - 5 кг. В этом случае, нам необходимо рассчитать следующее:
        • T = 2g(m 1)(m 2)/(m 2 +m 1)
        • T = 2(9,8)(10)(5)/(5 + 10)
        • T = 19,6(50)/(15)
        • T = 980/15
        • T = 65,33 Ньютонов.
      • Отметим, что, так как один груз тяжелее, все остальные элементы равны, эта система начнет ускоряться, следовательно, груз 10 кг будет двигаться вниз, заставляя второй груз идти вверх.
    2. Подвесьте грузы, используя блоки с не параллельными вертикальными нитями. Блоки зачастую используются для того, чтобы направлять силу натяжения в направлении, отличном от направления вниз или вверх. Если, к примеру, груз подвешен вертикально к одному концу веревки, а другой конец держит груз в диагональной плоскости, то непараллельная система блоков принимает форму треугольника с углами в точках с первых грузом, вторым и самим блоком. В этом случае натяжение в веревке зависит как от силы тяжести, так и от составляющей силы натяжения, которая параллельна к диагональной части веревки.

      • Давайте предположим, что у нас есть система с грузом в 10 кг (m 1), подвешенным вертикально, соединенный с грузом в 5 кг(m 2), расположенным на наклонной плоскости в 60 градусов (считается, что этот уклон не дает трения). Чтобы найти натяжение в веревке, самым легким путем будет сначала составить уравнения для сил, ускоряющих грузы. Далее действуем так:
        • Подвешенный груз тяжелее, здесь нет трения, так что мы знаем, что он ускоряется вниз. Натяжение в веревке тянет вверх, так что он ускоряется по отношению к равнодействующей силе F = m 1 (g) - T, или 10(9,8) - T = 98 - T.
        • Мы знаем, что груз на наклонной плоскости ускоряется вверх. Так как она не имеет трения, мы знаем, что натяжение тянет груз вверх по плоскости, а вниз его тянет только свой собственный вес. Составляющая силы, тянущей вниз по наклонной, вычисляется как mgsin(θ), так что в нашем случае мы можем заключить, что он ускоряется по отношению к равнодействующей силе F = T - m 2 (g)sin(60) = T - 5(9,8)(0,87) = T - 42,14.
        • Если мы приравняем эти два уравнения, то получится 98 - T = T - 42,14. Находим Т и получаем 2T = 140,14, или T = 70,07 Ньютонов.
    3. Используйте несколько нитей, чтобы подвесить объект. В заключение, давайте представим, что объект подвешен на «Y-образной» системе веревок - две веревки закреплены на потолке и встречаются в центральной точке, из которой идет третья веревка с грузом. Сила натяжения третьей веревки очевидна - простое натяжение в результате действия силы тяжести или m(g). Натяжения на двух остальных веревках различаются и должны составлять в сумме силу, равную силе тяжести вверх в вертикальном положении и равны нулю в обоих горизонтальных направлениях, если предположить, что система находится в состоянии покоя. Натяжение в веревке зависит от массы подвешенных грузов и от угла, на который отклоняется от потолка каждая из веревок.

      • Давайте предположим, что в нашей Y-образной системе нижний груз имеет массу 10 кг и подвешен на двух веревках, угол одной из которых составляет с потолком 30 градусов, а угол второй - 60 градусов. Если нам нужно найти натяжение в каждой из веревок, нам понадобится рассчитать горизонтальную и вертикальную составляющие натяжения. Чтобы найти T 1 (натяжение в той веревке, наклон которой 30 градусов) и T 2 (натяжение в той веревке, наклон которой 60 градусов), нужно решить:
        • Согласно законам тригонометрии, отношение между T = m(g) и T 1 и T 2 равно косинусу угла между каждой из веревок и потолком. Для T 1 , cos(30) = 0,87, как для T 2 , cos(60) = 0,5
        • Умножьте натяжение в нижней веревке (T=mg) на косинус каждого угла, чтобы найти T 1 и T 2 .
        • T 1 = 0,87 × m(g) = 0,87 × 10(9,8) = 85,26 Ньютонов.
        • T 2 =0,5 × m(g) = 0,5 × 10(9,8) = 49 Ньютонов.

В этой задаче необходимо найти отношение силы натяжения к

Рис. 3. Решение задачи 1 ()

Растянутая нить в этой системе действует на брусок 2, заставляя его двигаться вперед, но она также действует и на брусок 1, пытаясь препятствовать его движению. Эти две силы натяжения равны по величине, и нам как раз необходимо найти эту силу натяжения. В таких задачах необходимо упростить решение следующим образом: считаем, что сила является единственной внешней силой, которая заставляет двигаться систему трех одинаковых брусков, и ускорение остается неизменным, то есть сила заставляет двигаться все три бруска с одинаковым ускорением. Тогда натяжение всегда двигает только один брусок и будет равно mа по второму закону Ньютона. будет равно удвоенному произведению массы на ускорение, так как третий брусок находится на втором и нить натяжения должна уже двигать два бруска. В таком случае отношение к будет равно 2. Правильный ответ - первый.

Два тела массой и , связанные невесомой нерастяжимой нитью, могут без трения скользить по гладкой горизонтальной поверхности под действием постоянной силы (Рис. 4). Чему равно отношение сил натяжения нити в случаях а и б?

Выбор ответа: 1. 2/3; 2. 1; 3. 3/2; 4. 9/4.

Рис. 4. Иллюстрация к задаче 2 ()

Рис. 5. Решение задачи 2 ()

На бруски действует одна и та же сила, только в разных направлениях, поэтому ускорение в случае «а» и случае «б» будет одним и тем же, так как одна и та же сила вызывает ускорение двух масс. Но в случае «а» эта сила натяжения заставляет двигаться еще и брусок 2, в случае «б» это брусок 1. Тогда отношение этих сил будет равно отношению их масс и мы получим ответ - 1,5. Это третий ответ.

На столе лежит брусок массой 1 кг, к которому привязана нить, перекинутая через неподвижный блок. Ко второму концу нити подвешен груз массой 0,5 кг (Рис. 6). Определить ускорение, с которым движется брусок, если коэффициент трения бруска о стол составляет 0,35.

Рис. 6. Иллюстрация к задаче 3 ()

Записываем краткое условие задачи:

Рис. 7. Решение задачи 3 ()

Необходимо помнить, что силы натяжения и как векторы разные, но величины этих сил одинаковы и равны Точно также у нас будут одинаковы и ускорения этих тел, так как они связаны нерастяжимой нитью, хотя направлены они в разные стороны: - горизонтально, - вертикально. Соответственно, и оси для каждого из тел выбираем свои. Запишем уравнения второго закона Ньютона для каждого из этих тел, при сложении внутренние силы натяжения сократятся, и получим обычное уравнение, подставив в него данные, получим, что ускорение равно .

Для решения таких задач можно пользоваться методом, который использовался в прошлом веке: движущей силой в данном случае является результирующая внешних сил, приложенных к телу. Заставляет двигаться эту систему сила тяжести второго тела, но мешает движению сила трения бруска о стол, в этом случае:

Так как движутся оба тела, то движущая масса будет равна сумме масс , тогда ускорение будет равно отношению движущей силы на движущую массу Так можно сразу прийти к ответу.

В вершине двух наклонных плоскостей, составляющих с горизонтом углы и , закреплен блок. По поверхности плоскостей при коэффициенте трения 0,2 движутся бруски кг и , связанные нитью, перекинутой через блок (Рис. 8). Найти силу давления на ось блока.

Рис. 8. Иллюстрация к задаче 4 ()

Выполним краткую запись условия задачи и поясняющий чертеж (рис. 9):

Рис. 9. Решение задачи 4 ()

Мы помним, что если одна плоскость составляет угол в 60 0 с горизонтом, а вторая плоскость - 30 0 с горизонтом, то угол при вершине будет 90 0 , это обычный прямоугольный треугольник. Через блок перекинута нить, к которой подвешены бруски, они тянут вниз с одной и той же силой, и действие сил натяжения F н1 и F н2 приводит к тому, что на блок действует их результирующая сила. Но между собой эти силы натяжения будут равны, составляют они между собой прямой угол, поэтому при сложении этих сил получается квадрат вместо обычного параллелограмма. Искомая сила F д является диагональю квадрата. Мы видим, что для результата нам необходимо найти силу натяжения нити. Проведем анализ: в какую сторону движется система из двух связанных брусков? Более массивный брусок, естественно, перетянет более легкий, брусок 1 будет соскальзывать вниз, а брусок 2 будет двигаться наверх по склону, тогда уравнение второго закона Ньютона для каждого из брусков будет выглядеть:

Решение системы уравнений для связанных тел выполняется методом сложения, далее преобразовываем и находим ускорение:

Это значение ускорения необходимо подставить в формулу для силы натяжения и найти силу давления на ось блока:

Мы выяснили, что сила давления на ось блока приблизительно равна 16 Н.

Мы рассмотрели различные способы решения задач, которые многим из вас пригодятся в дальнейшем, чтобы понять принципы устройства и работы тех машин и механизмов, с которыми придется иметь дело на производстве, в армии, в быту.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Мнемозина, 2014.
  3. Кикоин И.К., Кикоин А.К. Физика-9. - М.: Просвещение, 1990.

Домашнее задание

  1. Каким законом мы пользуемся при составлении уравнений?
  2. Какие величины одинаковы у тел, связанных нерастяжимой нитью?
  1. Интернет-портал Bambookes.ru ( ).
  2. Интернет-портал 10klass.ru ().
  3. Интернет-портал Festival.1september.ru ().

Силой натяжения называют ту, что действует на объект, сравнимый с проволокой, шнуром, кабелем, ниткой и так далее. Это могут быть несколько объектов сразу, в таком случае сила натяжения будет действовать на них и необязательно равномерно. Объектом натяжения называют любой предмет, подвешенный на все вышеперечисленное. Но кому это нужно знать? Несмотря на специфичность информации, она может пригодиться даже в бытовых ситуациях.

Например, при ремонте дома или квартиры . Ну и, конечно же, всем людям, чья профессия связана с расчетами:

  • инженерам;
  • архитекторам;
  • проектировщикам и пр.

Натяжения нити и подобных объектов

А зачем им это знать и какая от этого практическая польза? В случае с инженерами и конструкторами знания о мощи натяжения позволят создавать устойчивые конструкции . Это означает, что сооружения, техника и прочие конструкции смогут дольше сохранять свою целостность и прочность. Условно, эти расчеты и знания можно разделить на 5 основных пунктов, чтобы в полной мере понять, о чем идет речь.

1 Этап

Задача: определить силу натяжения на каждом из концов нити. Эту ситуацию можно рассматривать как результат воздействия сил на каждый конец нити. Она равняется массе, помноженной на ускорение свободного падения. Предположим, что нить натянута туго. Тогда любые воздействия на объект приведет к изменению натяжения (в самой нити). Но даже при отсутствии активных действий, по умолчанию будет действовать сила притяжения. Итак, подставим формулу: Т=м*g+м*а, где g – ускорение падения (в данном случае подвешенного объекта), а – любое иное ускорение, действующее извне.

Есть множество сторонних факторов, влияющих на расчеты – вес нити, ее кривизна и так далее . Для простых расчетов это мы не будем пока что учитывать. Иными словами – пусть нить будет идеальна с математической точки зрения и «без изъянов».

Возьмем «живой» пример. На балке подвешена прочная нить с грузом в 2 кг. При этом отсутствует ветер, покачивания и прочие факторы, так или иначе влияющие на наши расчеты. Тогда мощь натяжения равна силе тяжести. В формуле это можно выразить так: Fн=Fт=м*g, в нашем случае это 9,8*2=19,6 ньютона.

2 Этап

Заключается он в вопросе об ускорении . К уже имеющейся ситуации давайте добавим условие. Суть его в том, чтобы на нить действовало еще и ускорение. Возьмем пример попроще. Представим, что нашу балку теперь поднимают вверх со скоростью 3 м/с. Тогда, к натяжению прибавится ускорение груза и формула примет следующий вид: Fн=Fт+уск*м. Ориентируясь на прошлые расчеты получаем: Fн=19,6+3*2=25,6 ньютона.

3 Этап

Тут уже посложнее, так как речь идет об угловом вращении . Следует понимать, что при вращении объекта вертикально, сила, воздействующая на нить, будет намного больше в нижней точке. Но давайте возьмем пример с несколько меньшей амплитудой качания (по типу маятника). В этом случае для расчетов нужна формула: Fц=м* v²/r. Тут искомое значение обозначает дополнительную мощь натяжения, v – скорость вращения подвешенного груза, а r – радиус окружности, по которому вращается груз. Последнее значение фактически равняется длине нити, пускай она составляет 1,7 метра.

Итак, подставляя значения, находим центробежные данные: Fц=2*9/1,7=10,59 ньютона. А теперь, чтобы узнать полную силу натяжения нити, надо к имеющимся данным о состоянии покоя прибавить центробежную силу: 19,6+10,59=30,19 ньютона.

4 Этап

Следует учитывать меняющуюся силу натяжения по мере прохождения груза через дугу . Иными словами – независимо от постоянной величины притяжения, центробежная (результирующая) сила меняется по мере того, как качается подвешенный груз.

Чтобы лучше понять этот аспект, достаточно представить себе привязанный груз к веревке, которую можно свободно вращать вокруг балки, к которой она закреплена (как качели). Если веревку раскачать достаточно сильно, то в момент нахождения в верхнем положении сила притяжения будет действовать в «обратную» сторону относительно силы натяжения веревки. Иными словами – груз станет «легче», из-за чего ослабнет и натяжение на веревку.

Предположим, что маятник отклоняется на угол, равный двадцати градусам от вертикали и движется со скоростью 1,7 м/с. Сила притяжения (Fп) при этих параметрах будет равна 19,6*cos(20)=19,6*0,94=18,424 Н; центробежная сила (F ц=mv²/r)=2*1,7²/1,7=3,4 Н; ну а полное натяжение (Fпн) будет равняться Fп+ Fц=3,4+18,424=21,824 Н.

5 Этап

Его суть заключается в силе трения между грузом и другим объектом , что в совокупности косвенно влияет на натяжение веревки. Иначе говоря – сила трения способствует увеличению силы натяжения. Это хорошо видно на примере перемещения объектов по шершавой и гладкой поверхностях. В первом случае трение будет большим, поэтому и сдвигать предмет становится тяжелее.

Общее натяжение в данном случае вычисляется по формуле: Fн=Fтр+Fу, где Fтр – трение, а Fу – ускорение. Fтр=мкР, где мк – трение между объектами, а Р – сила взаимодействия между ними.

Чтобы лучше понять данный аспект, рассмотрим задачу. Допустим, у нас груз 2 кг и коэффициент трения равен 0,7 с ускорением движения 4м/с постоянной скорости. Теперь задействуем все формулы и получаем:

  1. Сила взаимодействия - Р=2*9,8=19,6 ньютона.
  2. Трение - Fтр=0,7*19,6=13,72 Н.
  3. Ускорение - Fу=2*4=8 Н.
  4. Общая сила натяжения - Fн=Fтр+Fу=13,72+8=21,72 ньютона.

Теперь вы знаете больше и можете сами находить и рассчитывать нужные значения. Конечно, для более точных расчетов нужно учитывать больше факторов, но для сдачи курсовой и реферата этих данных вполне достаточно.

Видео

Это видео поможет вам лучше разобраться в данной теме и запомнить ее.

Определение

Силу натяжения определяют как равнодействующую сил , приложенных к нити, равную ей по модулю, но противоположно направленную. Устоявшегося символа (буквы), обозначающего силу натяжения нет. Ее обозначают и просто и , и . Математически определение для силы натяжения нити можно записать как:

где = векторная сумма всех сил, которые действуют на нить. Сила натяжения нити всегда направлена по нити (или подвесу).

Чаще всего в задачах и примерах рассматривают нить, массой которой можно пренебречь. Ее называют невесомой.

Еще одним важной характеристикой нити при расчете силы натяжения является ее растяжимость. Если исследуется невесомая и нерастяжимая нить, то такая нить считается просто проводящей через себя силу. В том случае, когда необходимо учитывать растяжение нити, применяют закон Гука, при этом:

где k – коэффициент жесткости нити, – удлинение нити при растяжении.

Единицы измерения силы натяжения нити

Основной единицей измерения силы натяжения нити (как и любой силы) в системе СИ является: [T]=Н

В СГС: [T]=дин

Примеры решения задач

Пример

Задание. Невесомая, нерастяжимая нить выдерживает силу натяжения T=4400Н. С каким максимальным ускорением можно поднимать груз массой m=400 кг, который подвешивают на эту нить, чтобы она не разорвалась?

Решение. Изобразим на рис.1 все силы, действующие на груз, и запишем второй закон Ньютона. Тело будем считать материальной точкой, все силы приложенными к центру масс тела.

где – сила натяжения нити. Запишем проекцию уравнения (1.1) на ось Y:

Из выражения (1.2) получим ускорение:

Все данные в задаче представлены в единицах системы СИ, проведем вычисления:

м/с 2

Ответ. a=1,2м/с 2

Пример

Задание. Шарик, имеющий массу m=0,1 кг прикрепленный к нити (рис.2) движется по окружности, расположенной в горизонтальной плоскости. Найдите модуль силы натяжения нити, если длина нити l=5 м, радиус окружности R=3м.

Решение. Запишем второй закон Ньютона для сил, приложенных к шарику, который вращается по окружности с центростремительным ускорением:

Найдем проекции данного уравнения на обозначенные на рис.2 оси X и Y.

популярное определение

Сила - это действие, которое может изменить состояние покоя или движения тела ; следовательно, он может ускорять или изменять скорость, направление или направление движения данного тела. Напротив, напряженность - это состояние тела, подверженного действию противодействующих сил, которые его притягивают.

Она известна как сила растяжения, которая при воздействии на упругое тело создает напряжение; Эта последняя концепция имеет различные определения, которые зависят от отрасли знаний, из которой она анализируется.

Канаты, например, позволяют передавать силы от одного тела к другому. Когда две равные и противоположные силы применяются на концах веревки, веревка становится натянутой. Короче говоря, силы натяжения - это каждая из этих сил, которая поддерживает канат без разрушения .

Физика и инженерия говорят о механическом напряжении, чтобы обозначить силу на единицу площади в окружении материальной точки на поверхности тела. Механическое напряжение может быть выражено в единицах силы, деленных на единицы площади.

Напряжение также является физической величиной, которая приводит электроны через проводник в замкнутую электрическую цепь, которая вызывает протекание электрического тока. В этом случае напряжение можно назвать напряжением или разностью потенциалов .

С другой стороны, поверхностное натяжение жидкости - это количество энергии, необходимое для уменьшения площади ее поверхности на единицу площади. Следовательно, жидкость оказывает сопротивление, увеличивая ее поверхность.

Как найти силу натяжения

Зная, что сила натяжения - это сила , с которой натягивается линия или струна, можно найти натяжение в ситуации статического типа, если известны углы линий. Например, если нагрузка находится на склоне, а линия, параллельная последнему, препятствует перемещению груза вниз, натяжение разрешается, зная, что сумма горизонтальных и вертикальных составляющих задействованных сил должна давать ноль.

Первый шаг для выполнения этого расчета - нарисовать склон и поместить на него блок массы M. Справа увеличивается наклон, и в одной точке он встречает стену, от которой линия проходит параллельно первому. и связать блок, удерживая его на месте и создавая натяжение T. Далее вы должны отождествить угол наклона с греческой буквой, которая может быть «альфа», а силу, которую он оказывает на блок, с буквой N, поскольку речь идет о нормальной силе .

Из блока вектор должен быть нарисован перпендикулярно наклону и вверх, чтобы представить нормальную силу, и один вниз (параллельно оси y ), чтобы отобразить силу тяжести. Затем вы начинаете с формул.

Чтобы найти силу, F = M используется. g , где g - это его постоянное ускорение (в случае силы тяжести это значение равно 9, 8 м / с ^ 2 ). Единицей, используемой для результата, является ньютон, который обозначается буквой N. В случае нормальной силы его необходимо разложить по вертикальным и горизонтальным векторам, используя угол, который он образует с осью x : для вычисления вектора вверх g равен косинусу угла, а для вектора в направлении слева, к лоно этого.

Наконец, левая составляющая нормальной силы должна быть приравнена к правой стороне напряжения T, наконец, разрешив напряжение.

  • библиотековедение

    Чтобы хорошо знать термин библиотечное дело, которое нас сейчас занимает, необходимо начать с выяснения его этимологического происхождения. В этом случае мы можем сказать, что это слово происходит от греческого, поскольку оно образовано суммой нескольких элементов этого языка: - Существительное «библион», которое можно перевести как «книга». - Слово «техе», которое является синонимом слова «ящик» или «место, где оно хранится». -Суффикс "-logía", который используется для обозначения "науки, которая изучает". Это известно как библиотечное дело в дисциплине, сфокусированной на

    определение

  • taxismo

    Таксизм не является термином, принятым Королевской испанской академией (RAE) в своем словаре. Понятие используется со ссылкой на направленное движение, которое реализует живое существо, чтобы ответить на стимул, который воспринимает. Такси может быть отрицательным (когда живое существо удаляется от источника стимула) или положительным (живое существо приближается к тому, что генерирует рассматриваемый стимул). Чтобы органи

    определение

  • расширение

    Расширение, от латинского expansĭo , является действием и эффектом расширения или расширения (распространение, распространение, развертывание, развертывание, придание большей амплитуды или создание чего-либо занимающего больше места). Расширение может быть территориальным ростом нации или империи от завоевания и аннексии новых земель. Например: «Американская экспансия девятнадцатого века была очень важной и затронула Мекси

    определение