Центростремительное ускорение. I. Механика. Движение по окружности Центростремительное ускорение находится по формуле

Позволяет нам существовать на этой планете. Как можно понять, что представляет собой центростремительное ускорение? Определение этой физической величины представлено ниже.

Наблюдения

Самый простой пример ускорения тела, движущегося по окружности, можно наблюдать, вращая камень на веревке. Вы тянете веревку, а веревка тянет камень к центру. В каждый момент времени веревка сообщает камню некоторое количество движения, и каждый раз - в новом направлении. Можно представить движение веревки в виде серии слабых рывков. Рывок - и веревка изменяет свое направление, еще рывок - еще раз изменение, и так по кругу. Если вы внезапно отпустите веревку, рывки прекратятся, а вместе с ними и прекратится изменение направления скорости. Камень будет двигаться в направлении касательной к кругу. Возникает вопрос: "С каким ускорением будет двигаться тело в это мгновение?"

Формула центростремительного ускорения

Прежде всего стоит заметить, что движение тела по окружности является сложным. Камень участвует в двух видах движения одновременно: под действием силы он движется к центру вращения, и одновременно по касательной к окружности, от этого центра удаляется. Согласно Второму закону Ньютона, сила, удерживающая камень на веревке, направлена к центру вращения вдоль этой веревки. Туда же будет направлен вектор ускорения.

Пусть за некоторое время t наш камень, равномерно двигаясь со скоростью V, попадает из точки A в точку B. Предположим, что в момент времени, когда тело пересекало точку B, на него перестала действовать центростремительная сила. Тогда за промежуток времени оно попало бы в точку K. Она лежит на касательной. Если бы в тот же момент времени на тело действовали бы только центростремительные силы, то за время t, двигаясь с одинаковым ускорением, оно оказалось бы в точке O, которая расположена на прямой, представляющей собой диаметр окружности. Оба отрезка являются векторами и подчиняются правилу векторного сложения. В результате суммирования этих двух движений за отрезок времени t получаем результирующую движения по дуге AB.

Если промежуток времени t взять пренебрежимо малым, то дуга AB будет мало отличаться от хорды AB. Таким образом, можно заменить движение по дуге движением по хорде. В этом случае перемещение камня по хорде будет подчиняться законам прямолинейного движения, то есть пройденное расстояние AB будет равно произведению скорости камня на время его движения. AB = V х t.

Обозначим искомое центростремительное ускорение буквой a. Тогда пройденный только под действием центростремительного ускорения путь можно рассчитать по формуле равноускоренного движения:

Расстояние AB равно произведению скорости и времени, то есть AB = V х t,

AO - вычислено ранее по формуле равноускоренного движения для перемещения по прямой: AO = at 2 / 2.

Подставляя эти данные в формулу и преобразуя их, получаем простую и изящную формулу центростремительного ускорения:

Словами это можно выразить так: центростремительное ускорение тела, двигающегося по окружности, равно частному от деления линейной скорости в квадрате на радиус окружности, по которой вращается тело. Центростремительная сила в таком случае будет выглядеть так, как на картинке ниже.

Угловая скорость

Угловая скорость равна частному от деления линейной скорости на радиус окружности. Верно и обратное утверждение: V = ωR, где ω - угловая скорость

Если подставить это значение в формулу, можно получить выражение центробежного ускорения для угловой скорости. Оно будет выглядеть так:

Ускорение без изменения скорости

И все же, отчего тело с ускорением, направленным к центру, не движется быстрее и не перемещается ближе к центру вращения? Ответ кроется в самой формулировке ускорения. Факты говорят о том, что движение по окружности реально, но для его поддержания требуется ускорение, направленное к центру. Под действием силы, вызванной данным ускорением, происходит изменение количества движения, в результате чего траектория движения постоянно искривляется, все время меняя направление вектора скорости, но не изменяя ее абсолютной величины. Двигаясь по кругу, наш многострадальный камень устремляется внутрь, в противном случае он продолжал бы двигаться по касательной. Каждое мгновение времени, уходя по касательной, камень притягивается к центру, но не попадает в него. Еще одним примером центростремительного ускорения может стать водный лыжник, описывающий небольшие круги на воде. Фигура спортсмена наклонена; он как бы падает, продолжая движение и наклонившись вперед.

Таким образом, можно сделать вывод о том, что ускорение не увеличивает скорость тела, так как векторы скорости и ускорения перпендикулярны друг к другу. Добавляясь к вектору скорости, ускорение лишь меняет направление движения и удерживает тело на орбите.

Превышение запаса прочности

В предыдущем опыте мы имели дело с идеальной веревкой, которая не рвалась. Но, допустим, наша веревка самая обычная, и даже можно вычислить усилие, после которого она просто порвется. Для того чтобы рассчитать эту силу, достаточно сопоставить запас прочности веревки с нагрузкой, которую она испытывает в процессе вращения камня. Вращая камень с большей скоростью, вы сообщаете ему большее количество движения, а значит, и большее ускорение.

При диаметре джутовой веревки около 20 мм ее прочность на разрыв равна около 26 кН. Примечательно, что длина веревки нигде не фигурирует. Вращая груз размером в 1 кг на веревке радиусом в 1 м, можно вычислить, что линейная скорость, необходимая для ее разрыва равна 26 х 10 3 = 1кг х V 2 / 1 м. Таким образом, скорость, которую опасно превышать, будет равна √26 х 10 3 = 161 м/с.

Сила тяжести

При рассмотрении опыта мы пренебрегали действием силы тяжести, так как при таких больших скоростях ее влияние пренебрежимо мало. Но можно заметить, что при раскручивании длинной веревки тело описывает более сложную траекторию и постепенно приближается к земле.

Небесные тела

Если перенести законы движения по окружности в космос и применить их к движению небесных тел, можно заново открыть несколько давно знакомых формул. Например, сила, с которой тело притягивается к Земле, известна по формуле:

В нашем случае множитель g и является тем самым центростремительным ускорением, которое было выведено из предыдущей формулы. Только в этом случае роль камня будет выполнять небесное тело, притягивающееся к Земле, а роль веревки - сила земного притяжения. Множитель g будет выражен через радиус нашей планеты и скорость ее вращения.

Итоги

Сущность центростремительного ускорения состоит в тяжелой и неблагодарной работе удержания движущегося тела на орбите. Наблюдается парадоксальный случай, когда при постоянном ускорении тело не изменяет величины своей скорости. Для неподготовленного ума такое заявление довольно парадоксально. Тем не менее и при расчете движения электрона вокруг ядра, и при вычислении скорости вращения звезды вокруг черной дыры, центростремительной ускорение играет не самую последнюю роль.

Позволяет нам существовать на этой планете. Как можно понять, что представляет собой центростремительное ускорение? Определение этой физической величины представлено ниже.

Наблюдения

Самый простой пример ускорения тела, движущегося по окружности, можно наблюдать, вращая камень на веревке. Вы тянете веревку, а веревка тянет камень к центру. В каждый момент времени веревка сообщает камню некоторое количество движения, и каждый раз - в новом направлении. Можно представить движение веревки в виде серии слабых рывков. Рывок - и веревка изменяет свое направление, еще рывок - еще раз изменение, и так по кругу. Если вы внезапно отпустите веревку, рывки прекратятся, а вместе с ними и прекратится изменение направления скорости. Камень будет двигаться в направлении касательной к кругу. Возникает вопрос: "С каким ускорением будет двигаться тело в это мгновение?"

Формула центростремительного ускорения

Прежде всего стоит заметить, что движение тела по окружности является сложным. Камень участвует в двух видах движения одновременно: под действием силы он движется к центру вращения, и одновременно по касательной к окружности, от этого центра удаляется. Согласно Второму закону Ньютона, сила, удерживающая камень на веревке, направлена к центру вращения вдоль этой веревки. Туда же будет направлен вектор ускорения.

Пусть за некоторое время t наш камень, равномерно двигаясь со скоростью V, попадает из точки A в точку B. Предположим, что в момент времени, когда тело пересекало точку B, на него перестала действовать центростремительная сила. Тогда за промежуток времени оно попало бы в точку K. Она лежит на касательной. Если бы в тот же момент времени на тело действовали бы только центростремительные силы, то за время t, двигаясь с одинаковым ускорением, оно оказалось бы в точке O, которая расположена на прямой, представляющей собой диаметр окружности. Оба отрезка являются векторами и подчиняются правилу векторного сложения. В результате суммирования этих двух движений за отрезок времени t получаем результирующую движения по дуге AB.

Если промежуток времени t взять пренебрежимо малым, то дуга AB будет мало отличаться от хорды AB. Таким образом, можно заменить движение по дуге движением по хорде. В этом случае перемещение камня по хорде будет подчиняться законам прямолинейного движения, то есть пройденное расстояние AB будет равно произведению скорости камня на время его движения. AB = V х t.

Обозначим искомое центростремительное ускорение буквой a. Тогда пройденный только под действием центростремительного ускорения путь можно рассчитать по формуле равноускоренного движения:

Расстояние AB равно произведению скорости и времени, то есть AB = V х t,

AO - вычислено ранее по формуле равноускоренного движения для перемещения по прямой: AO = at 2 / 2.

Подставляя эти данные в формулу и преобразуя их, получаем простую и изящную формулу центростремительного ускорения:

Словами это можно выразить так: центростремительное ускорение тела, двигающегося по окружности, равно частному от деления линейной скорости в квадрате на радиус окружности, по которой вращается тело. Центростремительная сила в таком случае будет выглядеть так, как на картинке ниже.

Угловая скорость

Угловая скорость равна частному от деления линейной скорости на радиус окружности. Верно и обратное утверждение: V = ωR, где ω - угловая скорость

Если подставить это значение в формулу, можно получить выражение центробежного ускорения для угловой скорости. Оно будет выглядеть так:

Ускорение без изменения скорости

И все же, отчего тело с ускорением, направленным к центру, не движется быстрее и не перемещается ближе к центру вращения? Ответ кроется в самой формулировке ускорения. Факты говорят о том, что движение по окружности реально, но для его поддержания требуется ускорение, направленное к центру. Под действием силы, вызванной данным ускорением, происходит изменение количества движения, в результате чего траектория движения постоянно искривляется, все время меняя направление вектора скорости, но не изменяя ее абсолютной величины. Двигаясь по кругу, наш многострадальный камень устремляется внутрь, в противном случае он продолжал бы двигаться по касательной. Каждое мгновение времени, уходя по касательной, камень притягивается к центру, но не попадает в него. Еще одним примером центростремительного ускорения может стать водный лыжник, описывающий небольшие круги на воде. Фигура спортсмена наклонена; он как бы падает, продолжая движение и наклонившись вперед.

Таким образом, можно сделать вывод о том, что ускорение не увеличивает скорость тела, так как векторы скорости и ускорения перпендикулярны друг к другу. Добавляясь к вектору скорости, ускорение лишь меняет направление движения и удерживает тело на орбите.

Превышение запаса прочности

В предыдущем опыте мы имели дело с идеальной веревкой, которая не рвалась. Но, допустим, наша веревка самая обычная, и даже можно вычислить усилие, после которого она просто порвется. Для того чтобы рассчитать эту силу, достаточно сопоставить запас прочности веревки с нагрузкой, которую она испытывает в процессе вращения камня. Вращая камень с большей скоростью, вы сообщаете ему большее количество движения, а значит, и большее ускорение.

При диаметре джутовой веревки около 20 мм ее прочность на разрыв равна около 26 кН. Примечательно, что длина веревки нигде не фигурирует. Вращая груз размером в 1 кг на веревке радиусом в 1 м, можно вычислить, что линейная скорость, необходимая для ее разрыва равна 26 х 10 3 = 1кг х V 2 / 1 м. Таким образом, скорость, которую опасно превышать, будет равна √26 х 10 3 = 161 м/с.

Сила тяжести

При рассмотрении опыта мы пренебрегали действием силы тяжести, так как при таких больших скоростях ее влияние пренебрежимо мало. Но можно заметить, что при раскручивании длинной веревки тело описывает более сложную траекторию и постепенно приближается к земле.

Небесные тела

Если перенести законы движения по окружности в космос и применить их к движению небесных тел, можно заново открыть несколько давно знакомых формул. Например, сила, с которой тело притягивается к Земле, известна по формуле:

В нашем случае множитель g и является тем самым центростремительным ускорением, которое было выведено из предыдущей формулы. Только в этом случае роль камня будет выполнять небесное тело, притягивающееся к Земле, а роль веревки - сила земного притяжения. Множитель g будет выражен через радиус нашей планеты и скорость ее вращения.

Итоги

Сущность центростремительного ускорения состоит в тяжелой и неблагодарной работе удержания движущегося тела на орбите. Наблюдается парадоксальный случай, когда при постоянном ускорении тело не изменяет величины своей скорости. Для неподготовленного ума такое заявление довольно парадоксально. Тем не менее и при расчете движения электрона вокруг ядра, и при вычислении скорости вращения звезды вокруг черной дыры, центростремительной ускорение играет не самую последнюю роль.

Источник задания: Решение 3553.-20. ОГЭ 2016 Математика, И.В. Ященко. 36 вариантов.

Задание 18. На диаграмме показано распределение земель по категориям Уральского, Приволжского, Южного и Дальневосточного федеральных округов. Определите по диаграмме, в каком округе доля земель сельскохозяйственного назначения наименьшая.

1) Уральский ФО

2) Приволжский ФО

3) Южный ФО

4) Дальневосточный ФО

Решение.

Земли сельскохозяйственного назначения окрашены сектором в виде горизонтальных линий (см. рисунок). Нужно выбрать округ, в котором площадь такого сектора минимальная. Анализ рисунка показывает, что это Дальневосточный федеральный округ.

Ответ: 4.

Задание 19. У бабушки 20 чашек: 10 с красными цветами, остальные с синими. Бабушка наливает чай в случайно выбранную чашку. Найдите вероятность того, что это будет чашка с синими цветами.

Решение.

Так как чашек с синими цветами ровно 20-10=10 штук, а всего чашек 20, то вероятность выбора наугад чашки с синими цветами, будет равна

.

Ответ: 0,5.

Задание 20. Центростремительное ускорение при движении по окружности (в м/с2) можно вычислить по формуле a=w^2*R где w - угловая скорость (в с-1), a R - радиус окружности. Пользуясь этой формулой, найдите радиус R (в метрах), если угловая скорость равна 7,5 с-1, а центростремительное ускорение равно 337,5 м/с2.

Решение.

Из формулы выразим радиус окружности, получим:

и вычислим его, подставив в формулу данные , , имеем.

В природе движение тела чаще происходит по кривым линиям. Почти любое криволинейное движение можно представить как по­следовательность движений по дугам окружностей. В общем случае, при движении по окружности скорость тела изменяется как по величине, так и по направлению.

Равномерное движение по окружности

Движение по окружности называется равномерным, если ве­личина скорости остается неизменной.

По третьему закону Ньютона всякое действие вызывает равное и противоположно направленное противодействие. Центростреми­тельной силе, с которой связь действует на тело, противодействует равная по модулю и противоположно направленная сила, с которой тело действует на связь. Эту силу F 6 назвали центробежной, так как она направлена по радиусу от центра окружности. Центробеж­ная сила равна по модулю центростремительной:

Примеры

Рассмотрим случай, когда спортсмен вращает вокруг своей го­ловы предмет, привязанный к концу нити. Спортсмен ощущает при этом силу, приложенную к руке и тянущую ее наружу. Для удер­жания предмета на окружности спортсмен (посредством нити) тянет его внутрь. Следовательно, по третьему закону Ньютона, предмет (опять-таки посредством нити) действует на руку с равной и противоположно направленной силой, и это та сила, которую ощущает рука спортсмена (рис. 3.23). Сила, действующая на пред­мет - это направленная внутрь сила натяжения нити.

Другой пример: на спортивный снаряд «молот» действует трос, удерживаемый спортсменом (рис. 3.24).

Напомним, что центробежная сила действует не на вращающее­ся тело, а на нить. Если бы центробежная сила действовала на те­ло, то при обрыве нити оно улетело бы по радиусу в сторону от центра, как показано на рис 3.25, а. Однако на самом деле при об­рыве нити тело начинает двигаться по касательной (рис 3.25, б) в направлении скорости, которую оно имело в момент обрыва нити.

Центробежные силы находят широкое применение.

Центрифуга - устройство, предназначенное для тренировок и испытаний летчиков, спортсменов, космонавтов. Большой радиус (до 15 м) и большая мощность двигателей (несколько МВт) позво­ляют создавать центростремительное ускорение до 400 м/с 2 . Цент­робежная сила при этом прижимает тела с силой, превосходящей нормальную силу тяжести на Земле больше чем в 40 раз. Человек может выдерживать временную перегрузку в 20-30 раз, если он ле­жит перпендикулярно направлению центробежной силы, и в 6 раз, если лежит вдоль направления этой силы.

3.8. Элементы описания движения человека

Движения человека носят сложный характер и с трудом под­даются описанию. Однако в ряде случаев можно выделить суще­ственные моменты, отличающие одни виды движений от других. Рассмотрим, например, чем отличается бег от ходьбы.

Элементы шагательных движений при ходьбе представлены на рис. 3.26. В шагательных движениях каждая нога поочередно быва­ет опорной и переносной. В опорный период входят амортизация (торможение движения тела по направлению к опоре) и отталки­вание, в переносной - разгон и торможение.

Последовательные движения тела человека и его ног при ходь­бе представлены на рис. 3.27.

Линии А и В дают качественное изображение движения стоп ног в процессе ходьбы. Верхняя линия А относится к одной ноге, нижняя линия В - к другой. Прямые участки соответствуют мо­ментам опоры стопы о землю, дугообразные участки - моментам движения стоп. В течение промежутка времени (а) обе ноги опи­раются на землю; затем (Ь) - нога А в воздухе, нога В продолжает опираться; а после (с) - вновь обе ноги опираются о землю. Чем быстрее ходьба, тем короче становятся промежутки и с).

На рис. 3.28 представлены последовательные движения тела человека при беге и графическое изображение движений стоп. Как видно на рисунке, при беге существуют промежутки времени { b , d , /), когда обе ноги находятся в воздухе, а промежутков од­новременного касания ног земли нет. Этим и отличается бег от ходьбы.

Другим распространенным видом движения является отталки­вание от опоры при различных прыжках. Отталкивание соверша­ется за счет выпрямления толчковой ноги, маховых движений рук и туловища. Задача отталкивания - обеспечить максимальную ве­личину вектора начальной скорости общего центра масс спортсме­на и его оптимальное направление. На рис. 3.29 показаны фазы

\ Глава 4

ДИНАМИКА ДВИЖЕНИЯ МАТЕРИАЛЬНОЙ ТОЧКИ

Динамикой называется раздел механики, в котором изучается движение тела с учетом его взаимодействия с другими телами.

В разделе «Кинематика» были введены понятия скорости и ус­корения материальной точки. Для реальных тел эти понятия нуж­даются в уточнении, так как для различных точек реального тела эти характеристики движения могут быть различны. Например, закрученный футбольный мяч не только движется вперед, но и вра­щается. Точки вращающегося тела движутся с разными скоростями. По этой причине сначала рассматривается динамика материальной точки, а затем полученные результаты распространяются на реаль­ные тела.

Так как линейная скорость равномерно меняет направление, то движение по окружности нельзя назвать равномерным , оно является равноускоренным .

Угловая скорость

Выберем на окружности точку 1 . Построим радиус. За единицу времени точка переместится в пункт 2 . При этом радиус описывает угол. Угловая скорость численно равна углу поворота радиуса за единицу времени.

Период и частота

Период вращения T - это время, за которое тело совершает один оборот.

Частота вращение - это количество оборотов за одну секунду.

Частота и период взаимосвязаны соотношением

Связь с угловой скоростью

Линейная скорость

Каждая точка на окружности движется с некоторой скоростью. Эту скорость называют линейной. Направление вектора линейной скорости всегда совпадает с касательной к окружности. Например, искры из-под точильного станка двигаются, повторяя направление мгновенной скорости.


Рассмотрим точку на окружности, которая совершает один оборот, время, которое затрачено - это есть период T . Путь , который преодолевает точка - это есть длина окружности.

Центростремительное ускорение

При движении по окружности вектор ускорения всегда перпендикулярен вектору скорости, направлен в центр окружности.

Используя предыдущие формулы, можно вывести следующие соотношения


Точки, лежащие на одной прямой исходящей из центра окружности (например, это могут быть точки, которые лежат на спице колеса), будут иметь одинаковые угловые скорости, период и частоту. То есть они будут вращаться одинаково, но с разными линейными скоростями. Чем дальше точка от центра, тем быстрей она будет двигаться.

Закон сложения скоростей справедлив и для вращательного движения. Если движение тела или системы отсчета не является равномерным, то закон применяется для мгновенных скоростей. Например, скорость человека, идущего по краю вращающейся карусели, равна векторной сумме линейной скорости вращения края карусели и скорости движения человека.

Земля участвует в двух основных вращательных движениях: суточном (вокруг своей оси) и орбитальном (вокруг Солнца). Период вращения Земли вокруг Солнца составляет 1 год или 365 суток. Вокруг своей оси Земля вращается с запада на восток, период этого вращения составляет 1 сутки или 24 часа. Широтой называется угол между плоскостью экватора и направлением из центра Земли на точку ее поверхности.

Согласно второму закону Ньютона причиной любого ускорения является сила. Если движущееся тело испытывает центростремительное ускорение, то природа сил, действием которых вызвано это ускорение, может быть различной. Например, если тело движется по окружности на привязанной к нему веревке, то действующей силой является сила упругости.

Если тело, лежащее на диске, вращается вместе с диском вокруг его оси, то такой силой является сила трения. Если сила прекратит свое действие, то далее тело будет двигаться по прямой

Рассмотрим перемещение точки на окружности из А в В. Линейная скорость равна v A и v B соответственно. Ускорение - изменение скорости за единицу времени. Найдем разницу векторов.