Применение полного внутреннего отражения. Полное внутреннее отражение света: описание, условия и законы Применение явления полного отражения

используется в так называемой волоконной оптике. Волоконной оптикой называется раздел оптики, в котором рассматривают передачу светового излучения по волоконно-оптическим световодам. Волоконно-оптические световоды представляют собой систему отдельных прозрачных волокон, собранных в пучки (жгуты). Свет, попадая внутрь прозрачного волокна, окруженного веществом с меньшим показателем преломления, многократно отражается и распространяется вдоль волокна (см. рис. 5.3).

1) В медицине и ветеринарной диагностике световоды используются главным образом для освещения внутренних полостей и передачи изображения.

Одним из примеров использования волоконной оптики в медицине является эндоскоп – специальный прибор для осмотра внутренних полостей (желудок, прямая кишка и др.). Одной из разновидностей таких приборов является волоконный гастроскоп . С его помощью можно не только визуально осмотреть желудок, но и произвести необходимые снимки с целью диагностики.

2) С помощью световодов также осуществляется передача лазерного излучения во внутренние органы с целью лечебного воздействия на опухоли.

3) Волоконная оптика нашла широкое применение и в технике. В связи с быстрым развитием информационных систем в последние годы возникла необходимость в качественной и быстрой передачи информации по каналам связи. С этой целью используется передача сигналов по лазерному лучу, распространяющемуся по волоконно-оптическим световодам.


ВОЛНОВЫЕ СВОЙСТВА СВЕТА

ИНТЕРФЕРЕНЦИЯ СВЕТА.

Интерференция – одно из ярких проявлений волновой природы света. Это интересное и красивое явление наблюдается при определенных условиях при наложении двух или нескольких световых пучков. С интерференционными явлениями мы сталкиваемся довольно часто: цвета масляных пятен на асфальте, окраска замерзающих оконных стекол, причудливые цветные рисунки на крыльях некоторых бабочек и жуков – все это проявление интерференции света.

ИНТЕРФЕРЕНЦИЯ СВЕТА - сложение в пространстве двух или нескольких когерентных световых волн, при котором в разных его точках получается усиление или ослабление амплитуды результирующей волны.



Когерентность.

Когерентностью называется согласованное протекание во времени и пространстве нескольких колебательных или волновых процессов, т.е. волн с одинаковой частотой и постоянной во времени разностью фаз.

Монохроматические волны (волны одной длины волны) - являются когерентными.

Так как реальные источники не дают строго монохроматического света, то волны, излучаемые любыми независимыми источниками света всегда некогерентны . В источнике свет излучается атомами, каждый из которых испускает свет лишь в течение времени ≈ 10 -8 с. Только в течение этого времени волны, испускаемые атомом имеют постоянные амплитуду и фазу колебаний. Но получить когерентные волны можно, разделив луч света, излучаемым одним источником, на 2 световые волны и после прохождения различных путей снова их соединить. Тогда разность фаз будет определяться разностью хода волн: при постоянной разности ходаразность фаз тоже будет постоянной .

УСЛОВИЕ ИНТЕРФЕРЕНЦИОННОГО МАКСИМУМА :

Если оптическая разность хода ∆ в вакууме равначетному числу полуволн или (целому числу длин волн)

(4.5)

то и колебания, возбуждаемые в точке M , будут происходить в одинаковой фазе .

УСЛОВИЕ ИНТЕРФЕРЕНЦИОННОГО МИНИМУМА.

Если оптическая разность хода ∆ равна нечетному числу полуволн

(4.6)

то и колебания, возбуждаемые в точке M , будут происходить в противофазе .

Типичным и распространенным примером интерференции света – мыльная пленка

Применение интерференции – просветление оптики: Часть света при прохождении через линзы отражается (до 50% в сложных оптических системах). Сущность метода просветления – поверхности оптических систем покрывают тонкими пленками, создающие интерференционные явления. Толщина пленки d=l/4 падающего света, тогда отраженный свет имеет разность хода , что соответствует минимуму интерференции

ДИФРАКЦИЯ СВЕТА

Дифракцией называется огибание волнами препятствий, встречающихся на их пути, или в более широком смысле - любое отклонение распространения волн вблизи препятствий от прямолинейного .

Возможность наблюдения дифракции зависит от соотношения длины волны света и размера препятствий (неоднородностей)

Дифракция Фраунгофера на дифракционной решетке.

Одномерная дифракционная решетка - система параллельных щелей равной ширины, лежащих в одной плоскости и разделенных равными по ширине непрозрачными промежутками.

Суммарная дифракционная картина есть результат взаимной интерференции волн, идущих от всех щелей - в дифракционной решетке осуществляется многолучевая интерференция когерентных дифрагированных пучков света, идущих от всех щелей.

Если a - ширина каждой щели(MN) ; b - ширина непрозрачных участков между щелями (NC) , то величина d = a+ b называется постоянной (периодом) дифракционной решетки .

где N 0 - число щелей, приходящееся на единицу длины.

Разности хода ∆ лучей (1-2) и (3-4) равна СF

1. . УСЛОВИЕ МИНИМУМОВ Если разность хода CF = (2n+1)l/2 – равна нечетному числу длин полуволн, то колебания лучей 1-2 и 3-4 будут проходить в противофазе, и они взаимно погасятся освещенности :

n = 1,2,3,4… (4.8)

При некотором угле падения света ${\alpha }_{pad}={\alpha }_{pred}$, который называют предельным углом , угол преломления равен $\frac{\pi }{2},\ $при этом преломленный луч скользит по поверхности раздела сред, следовательно, преломленный луч отсутствует. Тогда из закона преломления можно записать, что:

Рисунок 1.

В случае полного отражения уравнение:

не имеет решения в области действительных значений угла преломления (${\alpha }_{pr}$). В таком случае $cos{(\alpha }_{pr})$ чисто мнимая величина. Если обратиться к Формулам Френеля, то их удобно представить в виде:

где угол падения обозначен $\alpha $ (для краткости написания), $n$ -- показатель преломления среды, где свет распространяется.

Из формул Френеля видно, что модули $\left|E_{otr\bot }\right|=\left|E_{otr\bot }\right|$, $\left|E_{otr//}\right|=\left|E_{otr//}\right|$, что означает, что отражение является «полным».

Замечание 1

Надо отметить, что неоднородная волна во второй среде не исчезает. Так, если $\alpha ={\alpha }_0={arcsin \left(n\right),\ то\ }$ $E_{pr\bot }=2E_{pr\bot }.$ Нарушения закона сохранения энергии в данном случае нет. Так как формулы Френеля справедливы для монохроматического поля, то есть к установившемуся процессу. В таком случае закон сохранения энергии требует, чтобы среднее за период изменение энергии во второй среде было равно нулю. Волна и соответствующая доля энергии проникает через грани цу раздела во вторую среду на небольшую глубину порядка длины волны и движется в ней параллельно границе раздела с фазовой скоростью, которая меньше фазовой скорости волны во второй среде. Он возвращается в первую среду в точке, которая смещена относительно точки входа.

Проникновение волны во вторую среду можно наблюдать в эксперименте. Интенсивность световой волны во второй среде заметна только на расстояниях меньших длины волны. Около поверхности раздела, на которую падает волна света, которая испытывает полное отражение, на стороне второй среды можно видеть свечение тонкого слоя, если во второй среде есть флуоресцирующее вещество.

Полное отражение вызывает возникновение миражей, когда поверхность земли имеет высокую температуру. Так, полное отражение света, которое идет от облаков приводит к появлению впечатления, что на поверхности нагретого асфальта находятся лужи.

При обычном отражении отношения $\frac{E_{otr\bot }}{E_{pad\bot }}$ и $\frac{E_{otr//}}{E_{pad//}}$ всегда вещественны. При полном отражении они комплексны. Это значит, что в таком случае фаза волны терпит скачок, при этом он отличен от нуля или $\pi $. Если волна поляризована перпендикулярно плоскости падения, то можно записать:

где ${\delta }_{\bot }$ - искомый скачок фазы. Приравняем вещественные и мнимые части, имеем:

Из выражений (5) получаем:

Соответственно, для волны, которая поляризована в плоскости падения можно получить:

Скачки фаз ${\delta }_{//}$ и ${\delta }_{\bot }$ не одинаковы. Отраженная волна будет поляризована эллиптически.

Применение полного отражения

Допустим, что две одинаковые среды разделены тонким воздушным промежутком. На него падает световая волна под углом, который больше, чем предельный. Может сложиться так, что она проникнет в воздушный промежуток как неоднородная волна. Если толщина зазора мала, то данная волна достигнет второй границы вещества и при этом будет не очень ослабленной. Перейдя из воздушного промежутка в вещество, волна превратится снова в однородную. Такой опыт был проведен еще Ньютоном. Ученый прижимал к гипотенузной грани прямоугольной призмы другую призму, которая со шлифована сферически. При этом свет проходил во вторую призму не только там, где они соприкасаются, но и в небольшом кольце вокруг контакта, в месте, где толщина зазора сравнима с длинной волны. Если наблюдения проводились в белом свете, то край кольца имел красноватую окраску. Так и должно быть, так как глубина проникновения пропорциональна длине волны (для красных лучей она больше, чем для синих). Изменяя толщину промежутка, можно изменять интенсивность проходящего света. Это явление легло в основу светового телефона, который был запатентован фирмой Цейсс. В этом устройстве в качестве одной из сред выступает прозрачная мембрана, которая совершает колебания под действием звука, падающего на нее. Свет, который проходит сквозь воздушный промежуток, изменяет интенсивность в такт с изменениями силы звука. Попадая на фотоэлемент, он порождает переменный ток, который меняется в соответствии с изменениями силы звука. Полученный ток усиливается и используется далее.

Явления проникновения волн сквозь тонкие промежутки не специфичны для оптики. Это возможно для волны любой природы, если фазовая скорость в промежутке выше, чем фазовая скорость в окружающей среде. Важное значение данное явление имеет в ядерной и атомной физике.

Явление полного внутреннего отражения используют для изменения направления распространения света. С этой целью используют призмы.

Пример 1

Задание: Приведите пример явления полного отражения, которое часто встречается.

Решение:

Можно привести такой пример. Если шоссейная дорога сильно нагрета, то температура воздуха максимальна около поверхности асфальта и убывает при увеличении расстояния от дороги. Значит, показатель преломления воздуха минимален у поверхности и растет при увеличении расстояния. Как результат этого, лучи, имеющие небольшой угол относительно поверхности шоссе терпят полное отражение. Если сконцентрировать свое внимание, при движении в автомобиле, на подходящем участке поверхности шоссе, то можно увидеть довольно далеко едущую впереди машину в перевернутом виде.

Пример 2

Задание: Каков угол Брюстера для пучка света, который падает на поверхность кристалла, если предельный угол полного отражения для данного пучка на границе раздела воздух -- кристалл равен 400?

Решение:

\[{tg(\alpha }_b)=\frac{n}{n_v}=n\left(2.2\right).\]

Из выражения (2.1) имеем:

Подставим правую часть выражения (2.3) в формулу (2.2), выразим искомый угол:

\[{\alpha }_b=arctg\left(\frac{1}{{sin \left({\alpha }_{pred}\right)\ }}\right).\]

Проведем вычисления:

\[{\alpha }_b=arctg\left(\frac{1}{{sin \left(40{}^\circ \right)\ }}\right)\approx 57{}^\circ .\]

Ответ: ${\alpha }_b=57{}^\circ .$

Activity


Цифровой перископ

Перед вами техническая новинка.

Традиционный оптический канал существующих перископов заменён видеокамерами высокого разрешения и оптоволоконной связью. Информация с камер наружного наблюдения передается в режиме реального времени на широкоформатный дисплей в центральном посту.

Испытания проходят на борту подводной лодки SSN 767 Hampton типа Los-Angeles. Новая модель полностью меняет складывавшуюся десятилетиями практику работы с перископом. Теперь вахтенный офицер работает с установленными на штанге камерами, регулируя отображение на дисплее с помощью джойстика и клавиатуры.

Помимо дисплея в центральном посту изображение с перископа может выводиться на сколь угодно большое число дисплеев в любых помещениях лодки. Камеры дают возможность наблюдать одновременно за разными секторами горизонта, что значительно повышает скорость реакции вахты на изменения тактической обстановки на поверхности.


Чем объяснить "игру камней"? В ювелирном деле огранка камней подбирается так, что на каждой грани наблюдается полное отражение света.


Полным внутренним явлением объясняется явление миража

Мираж — оптическое явление в атмосфере: отражение света границей между резко разными по теплоте слоями воздуха. Для наблюдателя такое отражение заключается в том, что вместе с отдалённым объектом (или участком неба) видно его мнимое изображение, смещенное относительно предмета.

Миражи различают на нижние, видимые под объектом, верхние, — над объектом, и боковые. Верхний мираж наблюдается над холодной земной поверхностью, нижний мираж — над перегретой ровной поверхностью, часто пустыней или асфальтированной дорогой. Мнимое изображение неба создаёт при этом иллюзию воды на поверхности. Так, уходящая вдаль дорога в жаркий летний день кажется мокрой. Боковой мираж иногда наблюдается у сильно нагретых стен или скал.


Для начала немного пофантазируем. Представьте жаркий летний день до нашей эры, первобытный человек при помощи остроги охотится на рыбу. Замечает ее положение, целится и наносит удар почему-то вовсе не туда, где была видна рыба. Промахнулся? Нет, в руках у рыбака добыча! Все дело в том, что наш предок интуитивно разбирался в теме, которую мы будем изучать сейчас. В повседневной жизни мы видим, что ложка, опущенная в стакан с водой, кажется кривой, когда мы смотрим через стеклянную банку - предметы кажутся искривленными. Все эти вопросы мы рассмотрим на уроке, тема которого: «Преломление света. Закон преломления света. Полное внутренне отражение».

На предыдущих уроках мы говорили о судьбе луча в двух случаях: что будет, если луч света распространяется в прозрачно однородной среде? Правильный ответ - он будет распространяться прямолинейно. А что будет, когда луч света падает на границу раздела двух сред? На прошлом уроке мы говорили об отраженном луче, сегодня мы рассмотрим ту часть светового пучка, которая поглощается средой.

Какова же будет судьба луча, который проник из первой оптически прозрачной среды, во вторую оптически прозрачную среду?

Рис. 1. Преломление света

Если луч падает на границу раздела двух прозрачных сред, то часть световой энергии возвращается в первую среду, создавая отраженный пучок, а другая часть проходит внутрь во вторую среду и при этом, как правило, изменяет свое направление.

Изменение направления распространения света в случае его прохождения через границу раздела двух сред называют преломлением света (рис. 1).

Рис. 2. Углы падения, преломления и отражения

На рисунке 2 мы видим падающий луч, угол падания обозначим α. Луч, который будет задавать направление преломленного пучка света, будем называть преломленным лучом. Угол между перпендикуляром к границе раздела сред, восстановленным из точки падения, и преломленным лучом называют углом преломления, на рисунке это угол γ. Для полноты картины дадим еще изображение отображенного луча и, соответственно, угла отражения β. Какова же связь между углом падения и углом преломления, можно ли предсказать, зная угол падения и то, с какой среды в какую перешел луч, каким будет угол преломления? Оказывается можно!

Получим закон, количественно описывающий зависимость между углом падения и углом преломления. Воспользуемся принципом Гюйгенса, который регламентирует распространение волны в среде. Закон состоит из двух частей.

Падающий луч, преломленный луч и перпендикуляр, восстановленный в точку падения, лежат в одной плоскости .

Отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух данных сред и равна отношению скоростей света в этих средах.

Этот закон называют законом Снеллиуса, в честь голландского ученого, впервые его сформулировавшего. Причина преломления - в разнице скоростей света в разных средах. Убедиться в справедливости закона преломления можно, экспериментально направляя луч света под разными углами на границу раздела двух сред и измеряя углы падения и преломления. Если менять эти углы, измерять синусы и находить отношения синусов этих углов, мы убедимся в том, что закон преломления действительно справедлив.

Доказательства закона преломления при помощи принципа Гюйгенса - еще одно подтверждение волновой природы света.

Относительный показатель преломления n 21 показывает, во сколько раз скорость света V 1 в первой среде отличается от скорости света V 2 во второй среде.

Относительный показатель преломления - это наглядная демонстрация того факта, что причина изменения направления света при переходе из одной среды в другую - это разная скорость света в двух средах. Часто для характеристики оптических свойств среды пользуются понятием «оптическая плотность среды» (рис. 3).

Рис. 3. Оптическая плотность среды (α > γ)

Если луч переходит из среды с большей скоростью света в среду с меньшей скоростью света, то, как видно из рисунка 3 и закона преломления света, он будет прижиматься к перпендикуляру, то есть угол преломления меньше, чем угол падения. В этом случае говорят, что луч перешел из менее плотной оптической среды в более оптически плотную среду. Пример: из воздуха в воду; из воды в стекло.

Возможна и обратная ситуация: скорость света в первой среде меньше скорости света во второй среде (рис. 4).

Рис. 4. Оптическая плотность среды (α < γ)

Тогда угол преломления будет больше угла падения, а про такой переход скажут, что он совершен из оптически более плотной в менее оптически плотную среду (из стекла в воду).

Оптическая плотность двух сред может отличаться достаточно существенно, таким образом, становится возможна ситуация, приведенная на фотографии (рис. 5):

Рис. 5. Отличие оптической плотности сред

Обратите внимание, насколько смещена голова относительно туловища, находящегося в жидкости, в среде с большей оптической плотностью.

Однако относительный показатель преломления - не всегда удобная для работы характеристика, потому что он зависит от скоростей света в первой и во второй средах, а вот таких сочетаний и комбинаций двух сред может быть очень много (вода - воздух, стекло - алмаз, глицерин - спирт, стекло - вода и так далее). Таблицы были бы очень громоздкими, работать было бы неудобно, и тогда ввели одну абсолютную среду, по сравнению с которой сравнивают скорость света в других средах. В качестве абсолюта был выбран вакуум и скорости света сравниваются со скоростью света в вакууме.

Абсолютный показатель преломления среды n - это величина, которая характеризует оптическую плотность среды и равна отношению скорости света С в вакууме к скорости света в данной среде.

Абсолютный показатель преломления удобнее для работы, ведь мы скорость света в вакууме знаем всегда, она равна 3·10 8 м/с и является универсальной физической постоянной.

Абсолютный показатель преломления зависит от внешних параметров: температуры, плотности, а также от длины волны света, поэтому в таблицах обычно указывают средний показатель преломления для данного диапазона длин волн. Если сравнить показатели преломления воздуха, воды и стекла (Рис. 6), то видим, что у воздуха показатель преломления близок к единице, поэтому мы и будем его брать при решении задач за единицу.

Рис. 6. Таблица абсолютных показателей преломления для разных сред

Несложно получить связь абсолютного и относительного показателя преломления сред.

Относительный показатель преломления , то есть для луча, переходящего из среды один в среду два, равен отношению абсолютного показателя преломления во второй среде к абсолютному показателю преломления в первой среде.

Например: = ≈ 1,16

Если абсолютные показатели преломления двух сред практически одинаковы, это значит, что относительный показатель преломления при переходе из одной среды в другую будет равен единице, то есть луч света фактически не будет преломляться. Например, при переходе из анисового масла в драгоценный камень берилл свет практически не отклонится, то есть будет вести себя так, как при прохождении анисового масла, так как показатель преломления у них 1,56 и 1,57 соответственно, таким образом, драгоценный камень можно как бы спрятать в жидкости, его просто не будет видно.

Если налить воду в прозрачный стакан и посмотреть через стенку стакана на свет, то мы увидим серебристый блеск поверхности вследствие явления полного внутреннего отражения, о котором сейчас пойдет речь. При переходе луча света из более плотной оптической среды в менее плотную оптическую среду может наблюдаться интересный эффект. Для определенности будем считать, что свет идет из воды в воздух. Предположим, что в глубине водоема находится точечный источник света S, испускающий лучи во все стороны. Например, водолаз светит фонариком.

Луч SО 1 падает на поверхность воды под наименьшим углом, этот луч частично преломляется - луч О 1 А 1 и частично отражается назад в воду - луч О 1 В 1 . Таким образом, часть энергии падающего луча передается преломленному лучу, а оставшаяся часть энергии - отраженному лучу.

Рис. 7. Полное внутреннее отражение

Луч SО 2 , чей угол падения больше, также разделяется на два луча: преломленный и отраженный, но энергия исходного луча распределяется между ними уже по-другому: преломленный луч О 2 А 2 будет тусклее, чем луч О 1 А 1 , то есть получит меньшую долю энергии, а отраженный луч О 2 В 2 , соответственно, будет ярче, чем луч О 1 В 1 , то есть получит большую долю энергии. По мере увеличения угла падения прослеживается все та же закономерность - все большая доля энергии падающего луча достается отраженному лучу и все меньшая - преломленному лучу. Преломленный луч становится все тусклее и в какой-то момент исчезает совсем, это исчезновение происходит при достижении угла падения, которому отвечает угол преломления 90 0 . В данной ситуации преломленный луч ОА должен был бы пойти параллельно поверхности воды, но идти уже нечему - вся энергия падающего луча SО целиком досталась отраженному лучу ОВ. Естественно, что при дальнейшем увеличении угла падения преломленный луч будет отсутствовать. Описанное явление и есть полное внутреннее отражение, то есть более плотная оптическая среда при рассмотренных углах не выпускает из себя лучи, все они отражаются внутрь нее. Угол, при котором наступает это явление, называется предельным углом полного внутреннего отражения.

Величину предельного угла легко найти из закона преломления:

= => = arcsin, для воды ≈ 49 0

Самым интересным и востребованным применением явления полного внутреннего отражения являются так называемые волноводы, или волоконная оптика. Это как раз тот способ подачи сигналов, который используется современными телекоммуникационными компаниями в сетях Интернет.

Мы получили закон преломления света, ввели новое понятие - относительный и абсолютный показатели преломления, а также разобрались с явлением полного внутреннего отражения и его применением, таким как волоконная оптика. Закрепить знания можно, разобрав соответствующие тесты и тренажеры в разделе урока.

Получим доказательство закона преломления света при помощи принципа Гюйгенса. Важно понимать, что причина преломления - это разность скоростей света в двух различных средах. Обозначим скорость света в первой среде V 1 , а во второй среде - V 2 (рис. 8).

Рис. 8. Доказательство закона преломления света

Пусть на плоскую границу раздела двух сред, например из воздуха в воду, падает плоская световая волна. Волновая поверхность АС перпендикулярна лучам и , поверхности раздела сред МN сначала достигает луч , а луч достигнет этой же поверхности спустя промежуток времени ∆t, который будет равен пути СВ, деленному на скорость света в первой среде .

Поэтому в момент времени, когда вторичная волна в точке В только начнет возбуждаться, волна от точки А уже имеет вид полусферы радиусом АD, который равен скорости света во второй среде на ∆t: АD = ·∆t, то есть принцип Гюйгенса в наглядном действии. Волновую поверхность преломленной волны можно получить, проведя поверхность, касательную ко всем вторичным волнам во второй среде, центры которых лежат на границе раздела сред, в данном случае это плоскость ВD, она является огибающей вторичных волн. Угол падения α луча равен углу САВ в треугольнике АВС, стороны одного из этих углов перпендикулярны сторонам другого. Следовательно, СВ будет равно скорости света в первой среде на ∆t

СВ = ·∆t = АВ·sin α

В свою очередь, угол преломления будет равен углу АВD в треугольнике АВD, поэтому:

АD = ·∆t = АВ·sin γ

Разделив почленно выражения друг на друга, получим:

n - постоянная величина, которая не зависит от угла падения.

Мы получили закон преломления света, синус угла падения к синусу угла преломления есть величина постоянная для данных двух сред и равная отношению скоростей света в двух данных средах.

Кубический сосуд с непрозрачными стенками расположен так, что глаз наблюдателя не видит его дна, но полностью видит стенку сосуда СD. Какое количество воды нужно налить в сосуд, чтобы наблюдатель смог увидеть предмет F, находящийся на расстоянии b = 10 см от угла D? Ребро сосуда α = 40 см (рис. 9).

Что очень важно при решении этой задачи? Догадаться, что так как глаз не видит дна сосуда, но видит крайнюю точку боковой стенки, а сосуд представляет из себя куб, то угол падения луча на поверхность воды, когда мы ее нальем, будет равен 45 0 .

Рис. 9. Задача ЕГЭ

Луч падает в точку F, это значит, что мы видим четко предмет, а черным пунктиром изображен ход луча, если бы не было воды, то есть до точки D. Из треугольника NFК тангенс угла β, тангенс угла преломления, - это отношение противолежащего катета к прилежащему или, исходя из рисунка, h минус b, деленное на h.

tg β = = , h - это высота жидкости, которую мы налили;

Наиболее интенсивное явление полного внутреннего отражения используется в волоконных оптических системах.

Рис. 10. Волоконная оптика

Если в торец сплошной стеклянной трубки направить пучок света, то после многократного полного внутреннего отражения пучок выйдет с противоположной стороны трубки. Получается, что стеклянная трубка - проводник световой волны или волновод. Это произойдет независимо от того, прямая это трубка или изогнутая (Рис. 10). Первые световоды, это второе название волноводов, использовались для подсвечивания труднодоступных мест (при проведении медицинских исследований, когда свет подается на один конец световода, а второй конец освещает нужное место). Основное применение - это медицина, дефектоскопия моторов, однако наибольшее применение такие волноводы получили в системах передачи информации. Несущая частота при передаче сигнала световой волной в миллион раз превышает частоту радиосигнала, это значит, что количество информации, которое мы можем передать при помощи световой волны, в миллионы раз больше количества информации, передающейся радиоволнами. Это прекрасная возможность передачи огромной информации простым и недорогим способом. Как правило, информация по волоконному кабелю передается при помощи лазерного излучения. Волоконная оптика незаменима для быстрой и качественной передачи компьютерного сигнала, содержащего большой объем передаваемой информации. А в основе всего этого лежит такое простое и обычное явление, как преломление света.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Мнемозина, 2014.
  3. Кикоин И.К., Кикоин А.К. Физика - 9, Москва, Просвещение, 1990.
  1. Edu.glavsprav.ru ().
  2. Nvtc.ee ().
  3. Raal100.narod.ru ().
  4. Optika.ucoz.ru ().

Домашнее задание

  1. Дать определение преломления света.
  2. Назовите причину преломления света.
  3. Назовите самые востребованные применения полного внутреннего отражения.

Закон преломления, который часто используют в оптике, говорит о том, что:

\[\frac{{\sin \alpha \ }}{{\sin \gamma \ }}=n_{21}\to \frac{{\sin \alpha \ }}{n_{21}}={\sin \gamma \ }\left(1\right),\]

$\alpha $ - угол падения; $\gamma $ - угол преломления; $=\frac{n_2}{n_1}$ - относительный показатель преломления. Из уравнения (1) очевидно, что если $n_{21} 1\ },$ что не имеет смысла. Подобный случай имеет место для всех значений угла падения ($\alpha $), которые удовлетворяют условию ${\sin \alpha \ }>n_{21}$, что возможно при $n_{21}

Использование явления полного отражения

Угол падения ($\alpha $), при котором выполняется условие:

\[{sin {\alpha }_{kr}\ }=n_{21}(2)\]

называют критическим или предельным углом. При выполнении условия (2) преломленной волны мы наблюдать не можем, вся световая волна отражается обратно в первое вещество. Такое явление называется явлением полного внутреннего отражения.

Рассмотрим два одинаковых вещества, которые разделяет тонкий слой воздуха. На этот слой падает луч света под углом, большим критического. Световая волна, попадающая в воздушный зазор, может быть неоднородной. Допустим, что толщина промежутка воздуха мала, при этом световая волна падает на вторую границу вещества не сильно ослабленной. Распространившись из воздушного промежутка в вещество, волна снова станет однородной. Данный эксперимент был выполнен Ньютоном. Он длинную плоскую грань прямоугольной призмы прикладывал к телу со сферической гранью. Свет попадал во вторую призму не только в месте соприкосновения тел, но и в небольшом кольцевом пространстве около места контакта, там, где толщина воздушного промежутка имеет порядок равный длине волны. При проведении опытов с белым светом край кольца приобретал красноватую окраску, так как глубина проникновения пропорциональна длине волны (а для красных лучей она больше, чем для синих). При изменении толщины воздушного зазора, изменится интенсивность проходящего света. Данное явление стало основой светового телефона, который запатентовала фирмой Цейсс. В разработанном приборе одной средой становилась прозрачная мембрана, совершающая колебания при воздействии на нее звуком, попадающим на нее. Свет, распространяющийся через воздушный зазор, меняет свою интенсивность в такт с изменениями силы звука. Благодаря попаданию света на фотоэлемент, возникает переменный ток, в свою очередь зависящий от изменений силы звука. Возникающий ток подвергается усилению и используется далее.

Применение явления полного внутреннего отражения

На явлении полного внутреннего отражения основывается устройство прибора, с помощью которого можно определять показатель преломления вещества - рефрактометр Аббе- Пульриха. Полное внутренне отражение происходит на границе между стеклом, показатель преломления которого довольно большой, и он известен, и тонким слоем жидкости, которую наносят на поверхность стекла. Рефрактометр состоит из стеклянной призмы АА (между стеклами призмы помещают исследуемую жидкость), светофильтра (F), рычага, который поворачивается около трубы T, шкалы в виде дуги (D), на которую нанесены значения показателей преломления (рис.1). Пучок света S проходит через светофильтр и испытывает полное внутреннее отражение на границе капля - призма. Погрешность данного рефрактометра не более 0,1\%.

На основе явления полного внутреннего отражения основывается волоконная оптика, в которой формируются изображения при распространении света по световодам. Световоды представляют собой совокупности гибких волокон из прозрачных веществ, например, из расплавов кварцевого песка, покрытых оболочкой из прозрачного материала с показателем преломления меньшим, чем у стекла. В результате многократного отражения световая волна в световоде направляется по необходимому пути. Комплексы оптических волоком можно применять для исследования внутренних органов или передачи информации с помощью компьютеров.

Перископ (прибор для наблюдения из укрытия) основывается на явлении полного отражения. В перископах для изменения направления распространения света используют зеркала или системы линз.

Примеры задач с решением

Пример 1

Задание. Объясните, почему происходит сверкание («игра») драгоценных камней при их ювелирной обработке?

Решение. При ювелирной огранке камня способ его обработки подбирают таким образом, чтобы на каждой его грани возникало полное отражение света. Так, например, рис.2

Пример 2

Задание. Каким будет предельный угол полного внутреннего отражения для каменной соли, если показатель ее преломления составляет $n=1,54$?

Решение. Изобразим ход лучей при попадании света из воздуха на кристалл соли на рис.3.

Запишем закон полного внутреннего отражения:

\[{sin {\alpha }_{kr}\ }=n_{21}\left(2.1\right),\]

где $n_{21}=\frac{n_1}{n}\ $($n_1=1$ показатель преломления воздуха), тогда:

\[{\alpha }_{kr}={\arcsin (\frac{n_1}{n})\ }.\]

Поведём вычисления:

\[{\alpha }_{kr}={\arcsin \left(\frac{1}{1,54}\right)\approx 40,5{}^\circ \ }.\]

Ответ. ${\alpha }_{kr}=40,5{}^\circ $