Последствия первой атомной бомбы. Страшные последствия взрыва атомной бомбы над хиросимой Ядерная бомба последствия для человека

РЕФЕРАТ

по предмету естествознание на тему:

« Последствия ядерных взрывов и аварий на АЭС»

БЕЛГОРОД 2000

1. Из истории создания ядерного оружия

В 1894 г. Робер Сесил, бывший премьер-министр Великобритании, в своем обращении к Британской ассоциации содействия научному прогрессу, перечисляя нерешенные проблемы науки остановился на задаче: что же действительно представляет собой атом - существует он на самом деле или является лишь теорией, пригодной лишь для объяснения некоторых физических явлений; какова его структура.

В США любят говорить, что атом - уроженец Америки, но это не так.

На рубеже XIX и XX веков занимались главным образом европейские ученые. Английский ученый Томсон предложил модель атома, который представляет собой положительно заряженное вещество с вкрапленными электронами. Француз Беккераль открыл радиоактивность в 1896 г. Он показал, что все вещества, содержащие уран, радиоактивны, причем, радиоактивность пропорциональна содержанию урана.

Французы Пьер Кюри и Мария Склодовская-Кюри открыли радиоактивный элемент радий в 1898. Они сообщили, что им удалось из урановых отходов выделить некий элемент, обладающий радиоактивностью и близкий по химическим свойствам к барию. Радиоактивность радия примерно в 1 млн. раз больше радиоактивности урана.

Англичанин Резерфорд в 1902 году разработал теорию радиоактивного распада, в 1911 году он же открыл атомное ядро, и в 1919 году наблюдал искусственное превращение ядер.

А. Эйнштейн, живший до 1933 года в Германии, в 1905 году разработал принцип эквивалентности массы и энергии. Он связал эти понятия и показал, что определенному количеству массы соответствует определенное количество энергии.

Датчанин Н. Бор в 1913 г. разработал теорию строения атома, которая легла в основу физической модели устойчивого атома.

Дж. Кокфорт и Э. Уолтон (Англия) в 1932 г. экспериментально подтвердили теорию Эйнштейна.

Дж. Чедвик в том же году открыл новую элементарную частицу - нейтрон.

Д.Д. Иваненко в 1932 г. выдвинул гипотезу о том, что ядра атомов состоят из протонов и нейтронов.

Э. Ферми использовал нейтроны для бомбардировки атомного ядра (1934 г.).

В 1937 году Ирен Жолио-Кюри открыла процесс деления урана. У Ирен Кюри и ее ученика-югослава П. Савича результат получился невероятный: продуктом распада урана был лантан - 57-ой элемент, расположенный в середине таблицы Менделеева.

Мейтнер, которая в течении 30 лет работала у Гана, вместе с О. Фришем, работавшим у Бора, обнаружили, что при делении ядра урана части, полученные после деления, в сумме на 1/5 легче ядра урана. Это им позволило по формуле Эйнштейна посчитать энергию, содержащуюся в 1 ядре урана. Она оказалась равной 200 млн. электрон-вольт. В каждом грамме содержится 2.5X10 21 атомов.

В начале 40-х гг. 20 в. группой ученых в США были разработаны физические принципы осуществления ядерного взрыва. Первый взрыв произведен на испытательном полигоне в Аламогордо 16 июля 1945 г. В августе 1945 2 атомные бомбы мощностью около 20 кт каждая были сброшены на японские города Хиросима и Нагасаки. Взрывы бомб вызвали огромные жертвы - Хиросима свыше 140 тысяч человек, Нагасаки - около 75 тысяч человек, а также причинили колоссальные разрушения. Применение ядерного оружия тогда не вызывалось военной необходимостью. Правящие круги США преследовали политические цели - продемонстрировать свою силу для устрашения СССР.

Вскоре ядерное оружие было создано в СССР группой ученых во главе с академиком Курчатовым. В 1947 Советское правительство заявило, что для СССР больше нет секрета атомной бомбы. Потеряв монополию на ядерное оружие, США усилило начатые еще в 1942 работы по созданию термоядерного оружия. 1 ноября 1952 в США было взорвано термоядерное устройство мощностью 3 Мт. В СССР термоядерная бомба была впервые испытана 12 авг. 1953.

На сегодняшний день секретом ядерного оружия обладают кроме России и США также Франция, Германия, Великобритания, Китай, Пакистан, Индия, Италия.

Ядерный взрыв - процесс деления тяжелых ядер. Для того, чтобы произошла реакция, необходимо как минимум 10 кг высокообогащенного плутония. В естественных условиях это вещество не встречается. Данное вещество получается в результате реакций, производимых в ядерных реакторах. Естественный уран содержит приблизительно 0.7 процентов изотопа U-235, остальное - уран 238. Для осуществления реакции необходимо, чтобы в веществе содержалось не менее 90 процентов урана 235.

В зависимости от задач, решаемых ядерным оружием, от вида и расположения объектов, по которым планируются ядерные удары, а также от характера предстоящих боевых действий ядерные взрывы могут быть осуществлены в воздухе, у поверхности земли (воды) и под землей (водой). В соответствии с этим различают следующие виды ядерных взрывов:

· воздушный (высокий и низкий)

· наземный (надводный)

· подземный (подводный)

Ядерный взрыв способен мгновенно уничтожить или вывести из строя незащищенных людей, открыто стоящую технику, сооружения и различные материальные средства. Основными поражающими факторами ядерного взрыва являются:

· ударная волна

· световое излучение

· проникающая радиация

· радиоактивное заражение местности

· электромагнитный импульс

а) Ударная волна в большинстве случаев является основным поражающим фактором ядерного взрыва. По своей природе она подобна ударной волне обычного взрыва, но действует более продолжительное время и обладает гораздо большей разрушительной силой. Ударная волна ядерного взрыва может на значительном расстоянии от центра взрыва наносить поражения людям, разрушать сооружения и повреждать боевую технику. Ударная волна представляет собой область сильного сжатия воздуха, распространяющуюся с большой скоростью во все стороны от центра взрыва. Скорость распространения ее зависит от давления воздуха во фронте ударной волны; вблизи центра взрыва она в несколько раз превышает скорость звука, но с увеличением расстояния от места взрыва резко падает. За первые 2 сек ударная волна проходит около 1000 м, за 5 сек-2000 м, за 8 сек - около 3000 м. Это служит обоснованием норматива N5 ЗОМП "Действия при вспышке ядерного взрыва": отлично - 2 сек, хорошо - 3 сек, удовлетврительно-4 сек. Поражающее действие ударной волны на людей и разрушающее действие на боевую технику, инженерные сооружения и материальные средства прежде всего определяются избыточным давлением и скоростью движения воздуха в ее фронте. Незащищенные люди могут, кроме того поражаться летящими с огромной скоростью осколками стекла и обломками разрушаемых зданий, падающими деревьями, а также разбрасываемыми частями боевой техники, комьями земли, камнями и другими предметами, приводимыми в движение скоростным напором ударной волны. Наибольшие косвенные поражения будут наблюдаться в населенных пунктах и в лесу; в этих случаях потери войск могут оказаться большими, чем от непосредственного действия ударной волны. Ударная волна способна наносить поражения и в закрытых помещениях, проникая туда через щели и отверстия. Поражения, наносимые ударной волной, подразделяются на легкие, средние, тяжелые и крайне тяжелые. Легкие поражения характеризуются временным повреждением органов слуха, общей легкой контузией, ушибами и вывихами конечностей. Тяжелые поражения характеризуются сильной контузией всего организма; при этом могут наблюдаться повреждения головного мозга и органов брюшной полости, сильное кровотечение из носа и ушей, тяжелые переломы и вывихи конечностей. Степень поражения ударной волной зависит прежде всего от мощности и вида ядерного взрыва. При воздушном взрыве мощностью 20 кТ легкие травмы у людей возможны на расстояниях до 2,5 км, средние - до 2 км, тяжелые - до 1,5 км от эпицентра взрыва. С ростом калибра ядерного боеприпаса радиусы поражения ударной волной растут пропорционально корню кубическому из мощности взрыва. При подзем- ном взрыве возникает ударная волна в грунте, а при подводном - в воде. Кроме того, при этих видах взрывов часть энергии расходуется на создание ударной волны и в воздухе. Ударная волна, распространяясь в грунте, вызывает повреждения подземных сооружений, канализации, водопровода; при распространении ее в воде наблюдается повреждение подводной части кораблей, находящихся даже на значительном расстоянии от места взрыва.

б) Световое излучение ядерного взрыва представляет собой поток лучистой энергии, включающей ультрафиолетовое, видимое и инфракрасное излучение. Источником светового излучения является светящаяся область, состоящая из раскаленных продуктов взрыва и раскаленного воздуха. Яркость светового излучения в первую секунду в несколько раз превосходит яркость Солнца. Поглощенная энергия светового излучения переходит в тепловую, что приводит к разогреву поверхностного слоя материала. Нагрев может быть настолько сильным, что возможно обугливание или воспламенение горючего материала и растрескивание или оплавление негорючего, что может приводить к огромным пожарам. При этом действие светового излучения ядерного взрыва эквивалентно массированному применению зажигательного оружия, которое рассматривается в четвертом учебном вопросе. Кожный покров человека также поглощает энергию светового излучения, за счет чего может нагреваться до высокой температуры и получать ожоги. В первую очередь ожоги возникают на открытых участках тела, обращенных в сторону взрыва. Если смотреть в сторону взрыва незащищенными глазами, то возможно поражение глаз, приводящее к полной потере зрения. Ожоги, вызываемые световым излучением, не отличаются от обычных, вызываемых огнем или кипятком. они тем сильнее, чем меньше расстояние до взрыва и чем больше мощность боеприпаса. При воздушном взрыве поражающее действие светового излучения больше, чем при наземном той же мощности. В зависимости от воспринятого светового импульса ожоги делятся на три степени. Ожоги первой степени проявляются в поверхностном поражении кожи: покраснении, припухлости, болезненности. При ожогах второй степени на коже появляются пузыри. При ожогах третьей степени наблюдается омертвление кожи и образование язв. При воздушном взрыве боеприпаса мощностью 20 кТ и прозрачности атмосферы порядка 25 км ожоги первой степени будут наблюдаться в радиусе 4,2 км от центра взрыва; при взрыве заряда мощностью 1 МгТ это расстояние увеличится до 22,4 км. ожоги второй степени проявляются на расстояниях 2,9 и 14,4 км и ожоги третьей степени - на расстояниях 2,4 и 12,8 км соответственно для боеприпасов мощностью 20 кТ и 1МгТ.

в) Проникающая радиация представляет собой невидимый поток гамма квантов и нейтронов, испускаемых из зоны ядерного взрыва. Гамма кванты и нейтроны распространяются во все стороны от центра взрыва на сотни метров. С увеличением расстояния от взрыва количество гамма квантов и нейтронов, проходящее через единицу поверхности, уменьшается. При подземном и подводном ядерных взрывах действие проникающей радиации распространяется на расстояния, значительно меньшие, чем при наземных и воздушных взрывах, что объясняется поглощением потока нейтронов и гамма- квантов водой. Зоны поражения проникающей радиацией при взрывах ядерных боеприпасов средней и большой мощности несколько меньше зон поражения ударной волной и световым излучением. Для боеприпасов с небольшим тротиловым эквивалентом (1000 тонн и менее) наоборот, зоны поражающего действия проникающей радиацией превосходят зоны поражения ударной волной и световым излучением. Поражающее действие проникающей радиации определяется способностью гамма квантов и нейтронов ионизировать атомы среды, в которой они распространяются. Проходя через живую ткань, гамма кванты и нейтроны ионизируют атомы и молекулы, входящие в состав клеток, которые приводят к нарушению жизненных функций отдельных органов и систем. Под влиянием ионизации в организме возникают биологические процессы отмирания и разложения клеток. В результате этого у пораженных людей развивается специфическое заболевание, называемое лучевой болезнью. Для оценки ионизации атомов среды, а следовательно, и поражающего действия проникающей радиации на живой организм введено понятие дозы облучения (или дозы радиации) , единицей измерения которой является рентген (р). Дозе радиации 1 р соответствует образование в одном кубическом сантиметре воздуха приблизительно 2 миллиардов пар ионов. В зависимости от дозы излучения различают три степени лучевой болезни. Первая (легкая) возникает при получении человеком дозы от 100 до 200 р. Она характеризуется общей слабостью, легкой тошнотой, кратковременным головокружением, повышением потливости; личный состав, получивший такую дозу, обычно не выходит из строя. Вторая (средняя) степень лучевой болезни развивается при получении дозы 200-300 р; в этом случае признаки поражения - головная боль, повышение температуры, желудочно-кишечное расстройство - проявляются более резко и быстрее, личный состав в большинстве случаев выходит из строя. Третья (тяжелая) степень лучевой болезни возникает при дозе свыше 300 р; она характеризуется тяжелыми головными болями, тошнотой, сильной общей слабостью, головокружением и другими недомоганиями; тяжелая форма нередко приводит к смертельному исходу.

г) Радиоактивное заражение людей, боевой техники, местности и различных объектов при ядерном взрыве обусловливается осколками деления вещества заряда и не прореагировавшей частью заряда, выпадающими из облака взрыва, а также наведенной радиоактивностью. С течением времени активность осколков деления быстро уменьшается, особенно в первые часы после взрыва. Так, например, общая активность осколков деления при взрыве ядерного боеприпаса мощностью 20 кТ через один день будет в несколько тысяч раз меньше, чем через одну минуту после взрыва. При взрыве ядерного боеприпаса часть вещества заряда не подвергается делению, а выпадает в обычном своем виде; распад ее сопровождается образованием альфа частиц. Наведенная радиоактивность обусловлена радиоактивными изотопами, образующимися в грунте в результате облучения его нейтронами, испускаемыми в момент взрыва ядрами атомов химических элементов, входящих в состав грунта. Образовавшиеся изотопы, как правило, бета-активны, распад многих из них сопровождается гамма-излучением. Периоды полураспада большинства из образующихся радиоактивных изотопов, сравнительно невелики: от одной минуты до часа. В связи с этим наведенная активность может представлять опасность лишь в первые часы после взрыва и только в районе, близком к его эпицентру. Основная часть долгоживущих изотопов сосредоточена в радиоактивном облаке, которое образуется после взрыва. Высота поднятия облака для боеприпаса мощностью 10 кТ равна 6 км, для боеприпаса мощностью 10 МгТ она составляет 25 км. По мере продвижения облака из него выпадают сначала наиболее крупные частицы, а затем все более и более мелкие, образуя по пути движения зону радиоактивного заражения, так называемый след облака. Размеры следа зависят главным образом от мощности ядерного боеприпаса, а также от скорости ветра и могут достигать в длину несколько сотен и в ширину нескольких десятков километров. Поражения в результате внутреннего облучения появляются в результате попадания радиоактивных веществ внутрь организма через органы дыхания и желудочно-кишечный тракт. В этом случае радиоактивные излучения вступают в непосредственный контакт с внутренними органами и могут вызвать сильную лучевую болезнь; характер заболевания будет зависеть от количества радиоактивных веществ, попавших в организм. На вооружение, боевую технику и инженерные сооружения радиоактивные вещества не оказывают вредного воздействия.

д) Электромагнитный импульс воздействует прежде всего на радиоэлектронную и электронную аппаратуру (пробой изоляции, порча полупроводниковых приборов, перегорание предохранителей и т.д.). Электромагнитный импульс представляет собой возникающее на очень короткое время мощное электрическое поле.

Всю весну 1945 года на многие японские постоянно совершали налеты американские бомбардировщики Б-29. Эти самолеты были практически неуязвимы, они летали на недоступной для японских самолетов высоте. Например, в результате одного из таких рейдов погибло 125 тысяч жителей Токио, во время другого - 100 тысяч, 6 марта 1945 года Токио был окончательно превращен в руины. У американского руководства возникали опасения, что в результате последующих рейдов у них не останется цели для демонстрации их нового оружия. Поэтому, заранее отобранные 4 города - Хиросима, Кокура, Ниигата и Нагасаки - не подвергались бомбежкам. 5 августа в 5 часов 23 минуты 15 секунд была произведена первая в истории атомная бомбардировка. Попадание было почти идеальным: бомба взорвалась в 200 метрах от цели. В это время суток во всех концах города маленькие печки, отапливаемые углем, были зажжены, поскольку многие были заняты приготовлением завтрака. Все эти печки были опрокинуты взрывной волной, что привело к возникновению многочисленных пожаров в местах, сильно удаленных от эпицентра. Предполагалось, что население укроется в убежищах, но этого не произошло по нескольким причинам: во-первых не был дан сигнал тревоги, во-вторых над Хиросимой уже и ранее пролетали группы самолетов, которые не сбрасывали бомбы.

За первоначальной вспышкой взрыва последовали другие бедствия. Прежде всего это было воздействие тепловой волны. Оно длилось лишь секунды, но было настолько мощным, что расплавило даже черепицу и кристаллы кварца в гранитных плитах, превратила в угли телефонные столбы на расстоянии 4 км. от центра взрыва.

На смену тепловой волне пришла ударная. Порыв ветра пронесся со скоростью 800 км./час. За исключением пары стен все остальное. В круге диаметром 4 км. было превращено в порошок. Двойное воздействие тепловой и ударной волны за несколько секунд вызвало появление тысяч пожаров.

Вслед за волнами через несколько минут на город пошел странный дождь, крупные, как шарики, капли которого были окрашены в черный цвет. Это странное явление связано с тем, что огненный шар превратил в пар влагу, содержащуюся в атмосфере., который затем сконцентрировался в поднявшемся в небо облаке. Когда это облако, содержащее водяные пары и мелкие частицы пыли, поднимаясь вверх, достигло более холодных слоев атмосферы, произошла повторная конденсация влаги, которая потом выпала в виде дождя.

Люди, которые подверглись воздействию огненного шара от “Малыша” на расстоянии до 800 м. были сожжены настолько, что превратились в пыль. Выжившие люди выглядели еще ужасней мертвых: они полностью обгорели, под влиянием тепловой волны, а ударная волна сорвала с них обгоревшую кожу. Капли черного дождя были радиоактивны и поэтому они оставляли не проходящие ожоги.

Из имевшихся в Хиросиме 76000, 70000 были полностью повреждены: 6820 зданий разрушено и 55000 полностью сгорели. Было уничтожено большинство больниц, из всего медицинского персонала осталось дееспособны 10%. Оставшиеся в живых стали замечать у себя странные формы заболевания. Они заключались в том, что человека тошнило, наступала рвота, потеря аппетита. Позже начиналась лихорадка и приступы сонливости, слабости. К крови отмечалось низкое количество белых шариков. Все это были первыми признаками лучевой болезни.

После проведения успешной бомбардировки Хиросимы на 12 августа была назначена 2-ая бомбардировка. Но поскольку метеорологи обещали ухудшение погоды, было решено провести бомбардировку 9 августа. Целью был избран город Кокура. Около 8 30 утра американские самолеты достигли этого города, но провести бомбардировку им помешал смог от сталелитейного завода. Этот завод накануне подвергся налету и до сих пор горел. Самолеты развернулись в сторону Нагасаки. В 11 02 бомбы “толстяк” была сброшена на город. Она взорвалась на высоте 567 метров.

Две атомные бомбы, сброшенные на Японию, за секунды уничтожили более 200 тыс человек. Многие люди подверглись облучению, что привело к возникновению у них лучевой болезни, катаракты, рака, бесплодия.

Утратив атомную монополию, администрация Трумана ухватилась за идею создания термоядерного оружия. На первых этапах работы над водородной бомбой появились серьезные трудности: для начала реакции синтеза необходима высокая температура. Была предложена новая модель атомной бомбы, в которой механический удар первой бомбы используется для сжатия сердцевины второй бомбы, которая в свою очередь воспламеняется от сжатия. Затем вместо механического сжатия для воспламенения топлива использовали радиацию.

1 ноября 1952 г. в США было проведено секретное испытание термоядерного устройства. Мощность “Майка” составила 5-8 млн. тонн тринитротолуола. К примеру, мощность всех взрывчатых веществ, использованных во 2-ой мировой войне равнялась 5 млн. тонн. Ядерное горючее “Майка” представляло собой жидкий водород, взрыв которого детанировался атомным зарядом.

8 августа 1953 года в СССР была испытана первая в мире термоядерная бомба. Мощность взрыва превзошла все ожидания. Ближайший наблюдательный пункт был расположен на расстоянии 25 километров от места взрыва. После эксперимента Курчатов, создатель первой советской атомной и термоядерной бомбы, заявил о том, что нельзя допустить применения этого оружия по назначению. Его работы впоследствии продолжил А.Д. Сахаров.

22 ноября 1955 было произведено очередное испытание термоядерной бомбы. Взрыв был столь мощен, что произошли несчастные случаи. На расстоянии нескольких десятков километров погиб солдат - завалило траншею. В близлежащем населенном пункте погибли люди, не успевшие укрыться в бомбоубежищах.

Весной 1955 года Хрущев объявил об одностороннем маратории на ядерные испытания (в 1961 году испытания возобновятся, поскольку американские исследователи стали обгонять советские разработки).

Весной 1963 г. в штате Невада был испытан первый вариант нейтронного заряда. Позже была создана нейтронная бомба. Ее изобретатель Самюэль Коэн. Это самое маленькое оружие в семействе атомных, оно убивает не столько взрывом, сколько радиацией. Большая часть энергии расходуется на выпускание высокоэнергетических нейтронов. При взрыве такой бомбы мощностью в 1 килотонну (что в 12 раз меньше мощности бомбы, сброшенной на Хиросиму) разрушения будут наблюдаться только в радиусе 200 метров, в то время как все живые организмы погибнут на расстоянии до 1.2 км от эпицентра.

В начале 90-х годов в США стала зарождаться концепция, согласно которой вооруженные силы страны должны иметь не только ядерные и обычные вооружения, но и специальные средства, обеспечивающие эффективное участие в локальных конфликтах без нанесения противнику излишних потерь в живой силе и материальных ценностях.

Генераторы ЭМИ (супер ЭМИ), как показывают теоретические работы и проведенные за рубежом эксперименты, можно эффективно использовать для вывода из строя электронной и электротехнической аппаратуры, для стирания информации в банках данных и порчи ЭВМ.

Теоретические исследования и результаты физических экспериментов показывают, что ЭМИ ядерного взрыва может привести не только к выходу из строя полупроводниковых электронных устройств, но и к разрушению металлических проводников кабелей наземных сооружений. Кроме того возможно поражение аппаратуры ИСЗ, находящихся на низких орбитах.

То, что ядерный взрыв будет обязательно сопровождаться электромагнитным излучением, было ясно физикам-теоретикам еще до первого испытания ядерного устройства в 1945 году. Во время проводившихся в конце 50-х - начале 60-х годов ядерных взрывов в атмосфере и космическом пространстве наличие ЭМИ было зафиксировано экспериментально.

Создание полупроводниковых приборов, а затем и интегральных схем, особенно устройств цифровой техники на их основе, и широкое внедрение средств в радиоэлектронную военную аппаратуру заставили военных специалистов по иному оценить угрозу ЭМИ. С 1970 года вопросы защиты оружия и военной техники от ЭМИ стали рассматриваться министерством обороны США как имеющие высшую приоритетность.

Механизм генерации ЭМИ заключается в следующем. При ядерном взрыве возникают гамма и рентгеновское излучения и образуется поток нейтронов. Гамма-излучение, взаимодействуя с молекулами атмосферных газов, выбивает из них так называемые комптоновские электроны. Если взрыв осуществляется на высоте 20-40 км., то эти электроны захватываются магнитным полем Земли и, вращаясь относительно силовых линий этого поля создают токи, генерирующие ЭМИ. При этом поле ЭМИ когерентно суммируется по направлению к земной поверхности, т.е. магнитное поле Земли выполняет роль, подобную фазированной антенной решетки. В результате этого резко увеличивается напряженность поля, а следовательно, и амплитуда ЭМИ в районах южнее и севернее эпицентра взрыва. Продолжительность данного процесса с момента взрыва от 1 - 3 до 100 нс.

На следующей стадии, длящейся примерно от 1 мкс до 1 с, ЭМИ создается комптоновскими электронами, выбитыми из молекул многократно отраженным гамма-излучением и за счет неупругого соударения этих электронов с потоком испускаемых при взрыве нейтронов. Интенсивность ЭМИ при этом оказывается примерно на три порядка ниже, чем на первой стадии.

На конечной стадии, занимающей период времени после взрыва от 1 с до нескольких минут, ЭМИ генерируется магнитогидродинамическим эффектом, порождаемым возмущениями магнитного поля Земли токопроводящим огненным шаром взрыва. Интенсивность ЭМИ на этой стадии весьма мала и составляет несколько десятков вольт на километр.

Авария на Чернобыльской АЭС по своим долговременным последствиям явилась крупнейшей катастрофой современности.

Были и другие аварии связанные с атомной энергетикой.

В США самая большая авария, которая называется сегодня предупреждением о Чернобыле, случилась в 1979 году в штате Пенсильвания на АЭС в «Тримайл Айленд». До нее и после - еще 11 более мелких аварий на ядерных реакторах.

В Советском Союзе в какой-то мере предтечей Чернобыля можно считать три аварии, начиная с 1949 года, в производственном объединении «Маяк» на реке Теча.

После нее еще более десяти аварий на АЭС страны.

Масштабы глобальной Чернобыльской катастрофы, поражают воображение.

5.1 Хронология развития и причины аварии на 4-м блоке ЧАЭС.

Испытания на 4-м энергоблоке были задуманы с целью проверки возможности электроснабжения механизмов собственных нужд за счет энергии механического выбега ротора турбогенератора (когда частота и напряжение тока генератора непрерывно уменьшаются) при полной потере связи с энергосистемой и не включении автономных источников электроснабжения. В качестве эквивалентной нагрузки были выбраны по два ГЦН на каждой половине контура МПЦ.

В реальных ситуациях потеря связи с энергосистемой обязательно приводит к останову блока и заглушению реактора. Энергия выбегающего турбогенератора может быть использована для продления работы механизмов собственных нужд, участвующих в аварийном расхолаживании остановленного реактора. Главные циркуляционные насосы от выбегающего турбогенератора не запитываются, поскольку после обесточения они могу поддерживать циркуляцию в контуре МПЦ в течение 4-5 мин. за счет механической инерции своих вращающихся частей, для чего они снабжаются специальным маховиком. По истечении этого времени аварийный отвод остаточных выделений заглушенного реактора может производиться при естественной циркуляции воды в КМПЦ.

1ч.00 мин. - 1ч.30 мин. Перед планируемым остановом блока на плановый ремонт тепловая мощность реактора снижена до 1600 МВт. Запас реактивности до разгрузки составлял около 30 стержней ручного регулирования мощности (РР). Максимальная потеря запаса реактивности в переходном процессе после разгрузки составляет 15-16 стержней РР. В соответствии с требованиями "Технологического регламента" , действовавшего в то время, при снижении оперативного запаса реактивности до 26 стержней РР можно было работать с разрешения главного инженера станции, а при снижении до 15 ст.РР необходимо заглушить реактор кнопкой АЗ-5.

Отключен от сети турбогенератор номер 7. Питание собственных нужд переведено на трансформатор собственных нужд турбогенератора №8.

14ч.00 мин. В соответствии с программой испытаний закрытием ручных задвижек отключается баллонная подсистема аварийного охлаждения реактора (САОР), чтобы при прохождении сигналов, требующих ее срабатывания, холодная вода не попала в реактор. Это отключение САОР не являлось ключевым нарушением, поскольку САОР предназначена для исключения расплавления активной зоны при разрывах трубопроводов КМПЦ.

Однако диспетчер Киевэнерго не дает разрешение на заглушение аппарата и начало испытаний, и блок работает без САОР, что технологическим регламентом не допускается.

23ч.10 мин. Получено разрешение на остановку реактора. Мощность снижена до 700 МВт (тепловых). Запас реактивности до снижения был около 26 ст.РР. После снижения началось уменьшение запаса реактивности из-за отравления ксеноном.

В результате выхода стержней локального автоматического регулятора (ЛАР), компенсирующего отравление, на верхние концевые выключатели произошло отключение ЛАР и переход на автоматический регулятор интегральной мощности (АР) основного диапазона. Однако ведущему инженеру управления реактором (ВИУР) не удалось удержать его в работе и реактор был заглушен. В таких случаях нужно ждать разотравления реактора, но вместо этого начали подъем мощности.

1ч.00 мин. Персоналу, наконец, удалось поднять мощность реактора и стабилизировать её на уровне 200 МВт (тепловых) вместо 700-1000, определённых программой испытаний.

1ч.03 мин.-1ч.07мин. К 6 работающим главным циркуляционным насосам (ГЦН) дополнительно подключили еще 2, чтобы повысить надежность охлаждения активной зоны. С другой стороны, это подключение снижает запас до температуры насыщения на всасе ГЦН, а следовательно, и на входе в технологические канаты (ТК).

Ввиду значительных колебаний давления и уровня воды в барабанах-сепараторах, чтобы исключить останов блока по этим параметрам, персонал отключил защиту по давлению и уровню, что запрещено регламентом.

1ч. 20 мин. В результате отравления ксеноном стержни рабочего регулятора вышли почти на верхние концевые выключатели. Чтобы не допустить отключения АР и удержать его в зоне регулирования, ВИУРу пришлось интенсивно извлекать стержни ручного регулирования и укороченные стержни-поглотители (УСП).

В результате включения двух ГЦН в дополнение к шести работающим, уровень в барабанах-сепараторах стал уменьшаться. Для поддержания уровня ведущий инженер управления блоком (ВИУБ) резко увеличил подачу питательной воды в реактор, с 0,75 первоначального расхода (если за 1 принять среднее значение расхода питательной воды на мощности 200МВт) до трех, а затем и 4-х кратного. Вследствие этого технологические каналы оказались заполненными водой по всей высоте активной зоны, в то время как до увеличения подпитки паровая фаза занимала верхнюю часть канала на участке 1,5-2 м от верха активной зоны.

При положительном паровом коэффициенте реактивности в этом случае выделяется отрицательная реактивность, аппарат начинает глохнуть . Для удержания его на мощности необходимо извлекать стержни РР и УСП, что еще больше уменьшает запас реактивности.

Сочетание двух факторов: отравления и увеличения расхода питательной воды, - привело к тому, что в 1ч. 22мин. 30 сек, по данным распечатки программы "ПРИЗМА", в активной зоне находилось всего 6-8 стержней в пересчете на полностью погруженные.

После стабилизации уровня в барабанах-сепараторах ВИУБ резко снижает расход питательной воды до исходного.

В технологических каналах начинает образовываться паровая фаза, начиная от верхних участков активной зоны и распространяясь вниз. Аппарат начинает разгоняться. Включение дополнительных двух ГЦН способствовало этому разгону, поскольку уменьшило запас до температуры насыщения на входе в активную зону. Работающий регулятор стремится подавить увеличение мощности, идет вниз, доходит до нижнего концевого выключателя, происходит автоматический переход на резервный регулятор, который также начинает движение вниз, что было зафиксировано программой быстрой диагностики и регистрации параметров (ДРЕГ). Однако эффективности четырех стержней регулятора не хватает, и мощность реактора продолжает медленно увеличиваться.

Задачей ведущего инженера управления реактором в этой ситуации было "помогать" регулятору в подавлении растущей мощности путем ввода в активную зону стержней РР и УСП. Но, очевидно, выбор стержней для ввода в активную зону был неудачным.

Удачный выбор стержней на управление и их быстрый ввод в активную зону (по 4 или по 2) смогли бы остановить рост мощность и предотвратить аварию даже в этот момент.

1ч. 23 мин. После стабилизации давления и уровня в барабанах-сепараторах испытания на выбеге начались.

1ч. 23 мин. 04 сек. Закрыт стопорно-регулирующий клапан турбогенератора номер 8. Начался режим выбега.

В этом случае должна была сработать еще одна защита - останов реактора по отключению последнего оставшегося в работе турбогенератора. Но персонал, зная это, отключил заблаговременно эту защиту, по-видимому, чтобы иметь возможность повторить испытания, если первая попытка не удастся.

Поскольку на каждой из сторон контура многократной принудительной циркуляции (КМПЦ) 2 ГЦН были запитаны от системы, а 2 - от выбегающего турбогенератора, в процессе испытаний расход через КМПЦ уменьшался, увеличивалось парообразование, а это способствовало ускорению нарастания мощности.

В 1ч.23 мин. 40 сек. на мощности примерно 500 МВт (тепловых) начальник смены 4-го блока, поняв опасность ситуации, дал команду ВИУРу нажать кнопку АЗ-5. Стержни СУЗ пошли в зону, но дошли только до 3-3,5 м. Тогда ВИУР обесточил муфты сервоприводов, чтобы стержни опустились в зону под действием собственной тяжести, но большинство из них так и остались в верхней половине активной зоны.

В 1ч. 23 мин. 49 сек. произошел взрыв.

Ночью с 25 на 26 апреля на 4 блоках АЭС работало 176 человек - дежурный персонал и ремонтные службы.

На двух стоящих блоках 5 и 6 находилось 268 строителей и монтажников. Несколько десятков человек рыбачили на берегах пруда охладителя.

Все они стали очевидцами того, как в 1 час 23 мин 49 с. раздались 2 взрыва. Над четвертым энергоблоком на фоне черного неба стали видны раскаленные куски,икры, всполохи пламени.

Вздрогнули и прогнулись толстые железобетонные стены, в потоке пара рванули ввысь лопнули трубопроводы, на крыше во многих местах начался пожар.

Над реактором возникло оранжевое свечение.

5.2 Причины аварии на 4-м энергоблоке ЧАЭС.

Анализируя данные хронологии развития аварии, а также расчётные исследования по определению эффективности СУЗ в предаварийном состоянии, можно сформулировать следующие причины аварии.

Технические причины:

а) недостаток конструкций стержней РР, ПКАЗ, АЗ - наличие положительного выбега реактивности при погружении этих стержней с верхних концевиков. Как показывают результаты расчётных исследований при варьировании исходного высотного распределения плотности потока тепловых нейтронов в пределах точности показаний датчиков СФКРЭ вводимая положительная реактивность лежит в пределах 0,5-1,15b,

б) недостатком системы аварийной защиты. Как показывают результаты расчётов, если бы стержни УСП были задействованы в аварийную защиту, отсутствовал бы положительный выбег реактивности,

в) положительный паровой коэффициент реактивности.

Ошибки персонала:

а) снижение запаса реактивности ниже допустимой величины;

б) провал мощности до нуля во время её снижения, а затем подъём и работа на уровне меньшем, чем записано в программе эксперимента (200 МВт); на малой мощности аппарат менее устойчив, поскольку, во-первых, точность поддержания мощности автоматическим регулятором в диапазоне 0,25-20%Wном равна ±3%, в то время как в диапазоне (20-100)%Wном=±1%; во-вторых, на малой мощности небольшие её колебания приводят к значительным изменениям реактивности. Это объясняется небольшим запасом температуры теплоносителя на входе в активную зону до температуры насыщения из-за малого расхода питательной воды;

в) подключение к реактору всех восьми ГЦН с превышением расходов, установленных регламентом, по отдельным ГЦН;

г) блокировка персоналом защиты по повышению давления и снижению уровня в барабанах-сепараторах;

д) блокировка защиты по отключению двух турбогенераторов;

е) отключение САОР.

К ключевым нарушениям персонала следует отнести а) и б).

Авария на ЧАЭС привела к выбросу из активной зоны реактора 50 МКи радионуклидов и 50 МКи радиоактивных благородных газов, что составляет 3-4% от исходного количества радионуклидов в реакторе, которые поднялись с током воздуха на высоту 1200 м. Выброс радионуклидов в атмосферу продолжался до 6 мая, пока разрушенную активную зону реактора не забросали мешками с доломитом, песком, глиной и свинцом. И все это время в атмосферу поступали радионуклиды, которые развеялись ветром по всему миру. Отдельные мелкодисперсные частицы и радиоактивные газы были зарегистрированы на Кавказе, в Средней Азии, Сибири, Китае, Японии, США. 27 апреля в Хойниках радиационный фон составлял 3 Р/ч! Хватит и пяти дней, чтобы чтоб заболеть хронической лучевой болезнью. 28 апреля на большей части северной Европы, в частности в Дании наблюдалось повышение радиационного фона на 10% от исходного уровня. Сложные метеорологические условия и высокая летучесть радионуклидов привели к тому, что радиационный след сформировался в виде отдельных пятен.

Наряду с сильным загрязнением попадались участки совсем не загрязненные. Выпадение радиоактивности наблюдалось даже в районе Балтийского моря в виде длинного узкого следа. Сильному радиоактивному загрязнению подверглись Гомельская и Могилевская области Белоруссии, некоторые районы Киевской и Житомирской областей Украины, часть Брянской области России. Но основная часть радионуклидов осела в так называемой 30-километровой зоне и к северу от неё.

В выбросах было выделено 23 основных радионуклида. Большая часть из них распалась в течении нескольких месяцев, облучая при этом все вокруг дозами, в несколько десятков и сотен раз превосходящих фоновые. Из этих нуклидов наиболее опасен йод-131, имеющий период полураспада 8 сут и обладающий высокой способностью включаться в пищевые цепи. Однако его воздействие кратковременно, и заражения им человеку легко избежать путем проведения йодопрофилактики (т.е. в молекулы организма включается только «нормальный» йод, а радиоактивному как бы уже и места нет и он спокойно выводится из организма) и снижения потребления продуктов, превышающих санитарные нормы содержания его. В первые месяцы после аварии было категорически запрещено вести какую-либо хозяйственную деятельность на загрязненной территории, поэтому со стороны йода опасности заражения продуктов питания не возникло, она заключалась лишь в альфа- и бета-излучении.

Из долгоживущих изотопов, которые лучше назвать среднеживущими, наиболее значимыми являются стронций-90 и цезий-137 с периодами полураспада соответственно 29 и 30 лет. Они обладают рядом особенностей поведения в организме, путей поступления и способов выведения из организма, разные продукты обладают различной способностью концентрировать их в себе. Так, в 90 г. в Хойническом районе Гомельской области Белоруссии содержание цезия-137 в мясе в 400 раз; в картофеле – в 60 раз; в зерне – в 40-7000 раз (в зависимости от вида и места произрастания); в молоке – в 700 раз, а стронция – в 40 раз было выше нормы.

Что же можно сказать о таких долгоживущих изотопах, как калий-40, плутоний-239 и других, выбросы которых также имели место, периоды полураспада которых исчисляются тысячами и миллионами лет, об их участии в загрязнении окружающей среды сказано достаточно мало. Можно лишь сказать, что радиоактивный калий так же активно вступает в метаболизм, как и стабильный его изотоп, а плутоний, попадая в легкие, даже в очень малых концентрациях, способен вызвать рак их.

Но что же было сделано для того, чтоб очистить зараженные территории от радионуклидов, чтоб больше не подвергать людей этой опасности? Ведь отдаленные последствия хронического действия малых доз радиации – малоизученная область знания, почти ничего не известно о влиянии этого фактора на потомство. Одно можно сказать, что сколь угодно малой не была доза, она обязательно даст о себе знать.

Дезактивация территорий заключалась в одном – смыве радиоактивной пыли с поверхностей предметов. Это, конечно, важно и необходимо, но кто подумал о том, куда это всё смывалось, о земле, и так уже заражённой? Даже более того, 30-ти километровая зона была объявлена своеобразной «лабораторией», полигоном научных исследований для изучения влияния радиации на природу, следовательно не принималось никаких попыток по дезактивации почв. За пределами 30-километровой зоны таких работ также не проводилось, хотя науке известны способы выведения радионуклидов из почв. Основным принципом таких работ является перевод радионуклидов в растения с последующим их выкосом и захоронением. Ионы в почвах могут существовать в двух видах: в растворимом и адсорбированном. В адсорбированном виде они недоступны для растений. Сорбционная способность почв зависит от типа почв, наличия в них тех или иных веществ, оводненности и многих других факторов. Сорбция велика при наличии органических веществ в почве. Она значительно снижается при низких значениях рН, при наличии комплексонов, а также атомов-аналогов, которыми авляются для Со,Y и Се – Fe и Al, для Sr и Cs – Са и К. Адсорбированные же ионы легко вытесняют друг друга в соответствии с рядом активности металлов. Стронций вытесняется ионами железа и меди, к тому же сам обладает достаточной подвижностью в почвах. Цезий практически не вытесняется, но по данным Куликова И.В. и др. десорбируется водными растительными экстрактами и ЭДТА. Его подвижность увеличивается в почвах с высоким содержанием К и Са. Эта проблема требует дополнительных исследований.

Сильно пострадала территория, находящаяся в непосредственной близости от 4-го блока. От мощного облучения короткоживущими изотопами погибла часть хвойного леса. Умершая хвоя была рыжего цвета, а сам лес таил в себе смертельную опасность для всех, кто в нем находился. После осыпания хвои из голых ветвей проглядывали редкие зеленые листья березы – это говорило о большей устойчивости лиственных деревьев к радиации. У выживших хвойных деревьев летом 86 г. наблюдалось ингибирование роста, некроз точек роста, рост спящих почек, уплощение хвои, иголки ели по длине напоминали сосновые. Вместе с тем наблюдались компенсаторные реакции: увеличение продолжительности жизни хвои в ответ на снижение митотической активности и рост спящих почек в связи со смертью точек роста.

Весь мертвый лес площадью в несколько га был вырублен, вывезен и навсегда погребен в бетоне. В оставшихся лесах предполагается замена хвойных деревьев на лиственные. В результате катастрофы погибли все мелкие грызуны. Исчез с лица земли целый биоценоз хвойного леса, а сейчас там – буйное разнотравье случайной растительности.

Вода так же подвержена радиоактивному загрязнению, как и земля. Водная среда способствует быстрому распространению радиоактивности и заражению больших территорий до океанических просторов.

В Гомельской области стали непригодными для использования 7000 колодцев, ещё из 1500 пришлось несколько раз откачивать воду.

Пруд-охладитель подвергся облучению свыше 1000 бэр. В нем скопилось огромное количество продуктов деления урана. Большинство организмов, населяющих его, погибли, покрыли дно сплошным слоем биомассы. Сумели выжить лишь несколько видов простейших. Уровень воды в пруде на 7 метров выше уровня воды в реке Припять, поэтому и сегодня существует опасность попадания радиоактивности в Днепр.

Стоит конечно сказать, что усилиями многих людей удалось избежать загрязнения Днепра путем осаждения радиоактивных частиц на построенных многокилометровых земляных дамбах на пути следования зараженной воды реки Припять. Было также предотвращено загрязнение грунтовых вод – под фундаментом 4-го блока был сооружен дополнительный фундамент. Были сооружены глухие дамбы и стенка в грунте, отсекающие вынос радиоактивности из ближней зоны ЧАЭС. Это препятствовало распространению радиоактивности, но способствовало концентрации её на самой ЧАЭС и вокруг неё. Радиоактивные частицы и сейчас остаются на дне водоемов бассейна Припяти. В 88 г. принимались попытки очистки дна этих рек, но в связи с развалом союза не были закончены. А сейчас такую работу вряд ли кто-нибудь будет делать.

Ученые считают, что при нескольких крупномасштабных ядерных взрывах, повлекших за собой сгорание лесных массивов, городов, огромные слоя дыма, гари поднялись бы к стратосфере, блокируя тем самым путь солнечной радиации. Это явление носит название “ядерная зима”. Зима продлится несколько лет, может даже всего пару месяцев, но за это время будет почти полностью уничтожен озоновый слой Земли. На Землю хлынут потоки ультрафиолетовых лучей. Моделирование данной ситуации показывает, что в результате взрыва мощностью в 100 Кт температура понизится в среднем у поверхности Земли на 10-20 градусов. После ядерной зимы дальнейшее естественное продолжение жизни на Земле будет довольно проблематичным:

· возникнет дефицит питания и энергии. Из-за сильного изменения климата сельское хозяйство придет в упадок, природа будет уничтожена, либо сильно изменится.

· произойдет радиоактивное загрязнение участков местности, что опять же приведет к истребление живой природы

· глобальные изменения окружающей среды (загрязнение, вымирание множества видов, разрушение дикой природы).

Ядерное оружие - огромная угроза всему человечеству. Так, по расчетам американских специалистов, взрыв термоядерного заряда мощностью 20 Мт может сравнять с землей все жилые дома в радиусе 24 км и уничтожить все живое на расстоянии 140 км от эпицентра.

Учитывая накопленные запасы ядерного оружия и его разрушительную силу, специалисты считают, что мировая война с применением ядерного оружия означала бы гибель сотен миллионов людей, превращение в руины всех достижений мировой цивилизации и культуры.

К счастью, окончание холодной войны немного разрядило международную политическую обстановку. Подписаны ряд договоров о прекращении ядерных испытаний и ядерном разоружении.

Также важной проблемой на сегодняшний день является безопасная эксплуатация атомных электростанций. Ведь самая обыкновенное невыполнение техники безопасности может привести к таким же последствиям что и ядерная войны.

Сегодня люди должны подумать о своем будущем, о том в каком мире они будут жить уже в ближайшие десятилетия.

Список использованной литературы.

1. Абатуров Ю.Д. и др. Некоторые особенности радиационного поражения сосны в районе аварии на ЧАЭС.- Экология, 1991, №5, с.14-17.

2. Антонов В.П. Уроки Чернобыля: радиация, жизнь, здоровье.-К.: О-во «Знание» УССР, 1989. - 112 с.

3. Возняк В.Я. и др. Чернобыль: события и уроки. Вопросы и ответы/Возняк В.Я., Коваленко А.П., Троицкий С.Н.-М.:Политиздат, 1989. - 278 с.:ил.

4. Григорьев Ал.А.Экологические уроки прошлого и современности.- Л.:Наука, 1991. - 252 с.

5. Лупадин В.М. Чернобыль: оправдались ли прогнозы? – Природа, 1992, №9, с 22-24.

6. Климов А.Н. Ядерная физика и ядерные реакторы: Учебник для вузов. 2-е изд., перераб. и доп. – М.:Энергоатомиздат, 1985. 352 с., ил.

Ядерной войной принято называть гипотетическое столкновение между странами или военно-политическими блоками, имеющими термоядерное или ядерное оружие и пустившими его в действие. Атомное оружие в таком конфликте станет основным средством поражения. История ядерной войны, к счастью, ещё пока не написана. Но после начала холодной войны во второй половине прошлого века ядерная война между США и СССР считалась вполне вероятным развитием событий.

  • Что будет, если наступит ядерная война?
  • Доктрины ядерной войны в прошлом
  • Ядерная доктрина США времён оттепели
  • Ядерная доктрина России

Что будет, если наступит ядерная война?

Многие со страхом задавали вопрос: что будет, если начнется ядерная война? В этом таится масштабная экологическая опасность:

  • Взрывы выделили бы огромное количество энергии.
  • Пепел и сажа от пожаров надолго заслонили бы солнце, что привело бы к эффекту «ядерной ночи» или «ядерной зимы» с резким падением температуры на планете.
  • Дополнить апокалипсическую картину должно было радиоактивное заражение, которое для жизни имело бы не менее катастрофические последствия.

Предполагалось, что в такую войну неминуемо, прямо или косвенно, оказалось бы втянуто большинство стран мира.

Опасность ядерной войны в том, что она привела бы к глобальной экологической катастрофе и даже гибели нашей цивилизации.

Что будет происходить в случае ядерной войны? Мощный взрыв – это лишь часть катастрофы:

  1. В результате ядерного взрыва образуется гигантский огненный шар, жар от которого обугливает или полностью сжигает всё живое на достаточно большом удалении от эпицентра взрыва.
  2. Треть энергии выделяется в виде мощного светового импульса, тысячекратно превосходящего по яркости излучение солнца, поэтому он мгновенно воспламеняет все легко загорающиеся материалы (ткани, бумагу, дерево), а людям наносит ожоги третьей степени.
  3. Но первичные пожары разгореться не успевают, поскольку их гасит частично мощная взрывная волна. Летящие горящие обломки, искры, взрывы бытового газа, короткие замыкания и горящие нефтепродукты вызывают обширные и уже длительные вторичные пожары.
  4. Отдельные пожары сливаются в ужасающий огненный смерч, способный легко спалить любой мегаполис. Такими огненными смерчами, устроенными союзниками, были уничтожены Дрезден и Гамбург в годы Второй мировой.
  5. Поскольку в массовых пожарах в огромном количестве выделяется тепло, то разогретые воздушные массы устремляются вверх, образуя у поверхности земли ураганы, приносящие в очаг новые порции кислорода.
  6. Пыль и копоть возносится до стратосферы, формируя там гигантскую тучу, заслоняющую солнечный свет. А длительное затемнение приводит к ядерной зиме.

Земля после ядерной войны вряд ли осталась бы хоть немного похожей на себя прежнюю, она будет выжжена, и практически всё живое погибнет.

Поучительное видео о том, что будет если начнется ядерная война:

Доктрины ядерной войны в прошлом

Первая доктрина (теория, концепция) ядерной войны возникла сразу после завершения Второй мировой, в США. Затем она неизменно отражалась в стратегических концепциях НАТО и США. Впрочем, военная доктрина СССР также отводила ракетно-ядерному оружию решающую роль в следующей большой войне.

Первоначально предполагался массированный сценарий ядерной войны с неограниченным применением всех имеющихся ядерных вооружений, причём их целями стали бы не только военные, но и гражданские объекты. Считалось, что в таком конфликте преимущество получила бы страна, нанёсшая первой массированный ядерный удар по противнику, целью которого было упреждающее уничтожение его ядерного оружия.

Но существовала главная проблема ядерной войны – превентивная ядерная атака могла оказаться не столь эффективной, и противник оказался бы в состоянии нанести ответный ядерный удар по промышленным центрам и крупным городам.

С конца 50-х годов в США появилась новая концепция «ограниченной ядерной войны». В 70-е годы, согласно этой концепции, в гипотетическом вооружённом конфликте могли применяться различные системы вооружений, в том числе оперативно-тактическое и тактическое ядерное оружие, имевшее ограничения по масштабу применения и средствам доставки. Атомное оружие в подобном конфликте применялось бы только для уничтожения военных и важных экономических объектов. Если бы могло случиться искажение истории, ядерные войны в недавнем прошлом могли бы реально пойти по подобному сценарию.

Так или иначе, но США до сих пор остаётся единственным государством, на практике применившим в 1945 году ядерное оружие не против военных, а сбросившим 2 бомбы на мирное население Хиросимы (6 августа) и Нагасаки (9 августа).

Хиросима

6 августа 1945 года, прикрываясь Потсдамской декларацией, ставившей ультиматум относительно немедленной капитуляции Японии, американское правительство направило американский бомбардировщик к Японским островам, и тот в 08:15 по японскому времени сбросил на город Хиросима первую ядерную бомбу, которая имела условное название «Малыш».

Мощность этого заряда была относительно невелика – около 20 000 тонн в тротиловом эквиваленте. Взрыв заряда произошёл на высоте около 600 метров над поверхностью земли, а его эпицентр оказался над госпиталем Сима. В качестве цели демонстративного ядерного удара Хиросима была выбрана не случайно – именно там в это время находились генеральный штаб ВМС Японии и второй генштаб японской армии.

  • Взрыв разрушил значительную часть Хиросимы.
  • Мгновенно было убито свыше 70 000 человек .
  • Около 60 000 умерли позднее от ранений, ожогов и лучевой болезни .
  • В радиусе около 1,6 километра находилась зона полного разрушения, в то время как пожары распространились на площади 11,4 кв. км.
  • 90% зданий города либо были полностью разрушены, либо сильно повреждены.
  • От бомбардировки чудом уцелела трамвайная система.

В последующие за бомбардировкой полгода умерли от её последствий 140 000 человек .

Этот «незначительный», по мнению, военных, заряд еще раз доказал, что последствия ядерной войны для человечества разрушительны, как для расы.

Печальное видео о ядерной атаке на Хиросиму:

Нагасаки

9 августа в 11:02 другой американский самолёт сбросил на город Нагасаки ещё один ядерный заряд – «Толстяк». Он был взорван высоко над долиной Нагасаки, где располагались промышленные предприятия. Вторая подряд ядерная атака американцев на Японию вызвала новые катастрофические разрушения и человеческие жертвы:

  • Мгновенно погибли 74 000 японцев.
  • Полностью разрушенными оказались 14 000 зданий.

По сути эти страшные моменты можно назвать днями, когда чуть не началась ядерная война, поскольку бомб были сброшены на мирное население, и лишь чудо остановило тот миг, когда мир был на грани ядерной войны.

Ядерная доктрина США времён оттепели

По окончании холодной войны американская доктрина ограниченной ядерной войны трансформировалась в концепцию контрраспространения. Её впервые озвучил министр обороны США Л. Эспин в декабре 1993 года. Американцы посчитали, что с помощью договора о нераспространении ядерного оружия невозможно более добиться этой цели, поэтому в критические моменты США оставили за собой право наносить «разоружающие удары» по ядерным объектам неугодных режимов.

В 1997 году была принята директива, согласно которой армия США должна быть готовой к нанесению ударов по иностранным объектам наработки и хранения биологического, химического и ядерного оружия. А в 2002 году концепция контрраспространения вошла в американскую стратегию национальной безопасности. В её рамках США намеревались уничтожать ядерные объекты в Корее и Иране или взять под контроль пакистанские объекты.

Ядерная доктрина России

Военная доктрина России также периодически меняет свою редакцию. В последнем варианте Россия оставляет за собой право воспользоваться ядерным оружием, если против неё или её союзников было применено не только ядерное или иные виды оружия массового поражения, но и обычные вооружения, если это угрожает самим основам существования государства, что может стать одной из причин ядерной войны. Это говорит о главном – вероятность ядерной войны в настоящее время существует достаточно остро, но правители понимают, что в этом конфликте никто не сможет выжить.

Ядерное оружие России

Альтернативная история с ядерной войной разработана в России. Госдеп США на 2016 год оценил, основываясь на предоставленных по договору СНВ-3 данных, что в российской армии развёрнуто 508 стратегических ядерных носителя:

  • межконтинентальные баллистические ракеты;
  • стратегические бомбардировщики;
  • ракеты на подлодках.

Всего носителей ядерных зарядов 847, на которых установлены 1796 заряда. Следует отметить, что ядерное оружие в России сокращается достаточно интенсивно – за полгода его количество уменьшается на 6%.

С таким вооружением и более 10 странами в мире, официально подтвердившими наличие ядерного оружия, угроза ядерной войны – глобальная проблема, предотвращение которой является гарантией жизни на Земле.

А Вы боитесь ядерной войны? Как Вы думаете, наступит ли она и как скоро? Поделитесь своим мнением или догадками в комментариях .

Я видел сон... не все в нем было сном.

Погасло солнце светлое — и звезды

Скиталися без цели, без лучей

В пространстве вечном; льдистая земля

Носилась слепо в воздухе безлунном.

Час утра наставал и проходил,

Но дня не приводил он за собою...

Тьма, Джордж Байрон

Согласно теории демографа эпохи романтизма, Т.Мальтуса, рождаемость любого вида возрастает в геометрической прогрессии, в то время как обеспечение продовольствием растёт только в арифметической прогрессии, то есть значительно медленнее. Война -один из естественных и наиболее вероятных, средств контроля рождаемости и размера человечества.

Сегодня планета уже перенаселена — на ней живут 6,8 млрд. человек, причем почти миллиард из них непрерывно голодает. Войны происходят регулярно, идут они и сейчас, причем даже в государствах, близких к Европе, как, например, в соседней, сильно перенаселенной и небогатой Украине.

Но, глобальных войн, затрагивающих всё человечество, да ещё с использованием оружия массового поражения, пока нет. Это слишком опасно и правительства удерживаются, как могут, от подобных конфликтов. Но, известный уже почти полвека, в чем-то шутливый, а во многом и правильный закон Мёрфи гласит — если что-то может случиться, это обязательно произойдет. Причем, события пойдут по наихудшему для нас сценарию. Выходит, ядерная война однажды может произойти.

Несколько раз кряду человечество уже избегало ядерного апокалипсиса. Сегодня, когда стран обладающих технологией создания атомных (водородных, нейтронных) бомб и средствами их доставки уже очень много и человечество, казалось бы, должно быть в тысячу раз осторожнее, вновь развивается острейший международный политический кризис, связанный с уже упоминавшейся войной на Украине, который может, в итоге, привести, если и не к апокалипсису, то к локальному ядерному конфликту.

У меня лично нет никаких сомнений в том, что будь у украинских стратегов под рукой «ядерная кнопка», они бы не замедлили ею воспользоваться. Вспомните фразу Юлии Тимошенко о том, что русских «надо расстреливать из ядерного оружия» или слова бывшего министра обороны Украины, Валерия Гелетея, который, в одном из интервью предположил, что во время штурма Луганского аэропорта «русские войска» (которых, он, конечно, не видел) стреляли ядерными минами из самоходного миномета 2С4 «Тюльпан».

А ведь бывший премьер, как и бывший министр обороны — элита украинского общества. Будь на их месте, другие, они бы даже не рассуждали. В то же время, «брошенные в мир» слова о ядерном оружии выглядят попыткой искать у запада защиты и... помощи с «адекватным ответом»?

В связи с этим стоит вспомнить и предыдущие ситуации, которые едва не закончились смертельными для человечества последствиями.

Операция «Троян»

Первую ядерную атаку — на японские города — Хиросиму и Нагасаки, задумали и осуществили Соединенные Штаты Америки. Тогда же, в 1945 году появилась и секретная директива Объединенного комитета военного планирования о подготовке атомной бомбардировки крупных городов на территории СССР. На них предполагалось сбросить 196! атомных бомб.

Когда в СССР всё же сумели выкрасть-создать свою технологию производства ядерного оружия, США разработали план «Троян», который предполагал атаку на СССР на новый год, 1 января 1950 года. Ядерный арсенал Советского Союза был тогда гораздо скромнее американского и вашингтонские ястребы были почти уверены победе. Так что, вполне вероятно, СССР уже тогда мог стать полигоном для натурных испытаний американских бомб. Да вот только американцы вовремя подсчитали, что потеряют половину своих бомбардировщиков, а план полностью выполнить не удастся. Это их тогда и удержало. Кстати, бытует мнение, что мир спас один из первых суперкомпьютеров в мире ENIAK, который был задействован Пентагоном в расчетах итогов операции.

А позже, в 1961-м, после испытания в СССР «Царь-бомбы» АН 602, США отказались от идеи превентивного ядерного удара.

Хрущев, Кеннеди и искусство дипломатии

Второй раз на грань уничтожения мир встал в результате Карибского кризиса, в октябре 1962 года. Тогда, в ответ на размещение ракет средней дальности в Турции, СССР установил тактические ядерные ракеты Р-12 на Кубе. США, в ответ, организовали военно-морскую блокаду Кубы и начали подготовку к вторжению на остров.

Лишь благодаря великолепному искусству дипломатии, проявленному обеими сторонами конфликта, войны удалось избежать. А ведь СССР тогда практически не имел шансов перед военной машиной США. Если говорить только ракетах, то в стране было 75 готовых к пуску баллистических ракет — недостаточно надежных, требующих длительной предстартовой подготовки. Причем, одновременно могли взлететь только 25 ракет. У США уже тогда было 700 баллистических ракет. По остальным вооружениям силы также были не равны, это казалось и противоракетной защиты.

Силы равны?

Сейчас Россия обладает серьёзным ядерным потенциалом, который достаточен для сдерживания любой агрессии. По словам военного эксперта, бывшего руководителя израильских спецслужб, даже в случае локального обмена ядерными ударами, ущерб для Соединенных Штатов будет нестерпимым. Именно поэтому, прямая война между двумя крупнейшими обладателями ядерного оружия — Россией и США, пока отложена.

Совсем другое дело — локальные конфликты. Сегодня в «ядерный» клуб» вступило уже немало государств с развивающейся экономикой, как Пакистан, Индия. Получила свою «бомбу» Северная Корея, готовится вступить в «ядерный клуб» и ортодоксальный Иран.

Именно поэтому и существует опасность, что где-то вспыхнет локальный конфликт, который втянет в свою орбиту и крупнейшие ядерные державы. И тут уже — жди беды.

Ну и, конечно, можно использовать обычные вооружения. США, например, готовы сегодня воевать и неядерным, а лишь высокоточным оружием. По словам вице-премьера РФ Дмитрия Рогозина, более десяти лет в США прорабатывается концепция молниеносного «глобального удара». Она предусматривает «нанесение удара неядерным вооружением по любой точке планеты в течение одного часа». «Согласно результатам военной игры, проведенной в Пентагоне в конце прошлого года, с помощью 3,5—4 тыс. единиц высокоточного оружия США могут за 6 часов уничтожить основные инфраструктурные объекты противника и лишить его возможности к сопротивлению».

Если такой удар будет нанесен по России, то главными целями станут силы стратегического ядерного сдерживания. «По существующим в США экспертным оценкам, в результате такого удара может быть уничтожено от 80 до 90 процентов нашего ядерного потенциала», — заявил вице-премьер.

Тем не менее, Россия, конечно, ответит — ядерным ударом...

Если случится война...

На тему постъядерного апокалипсиса написаны тысячи художественных и исследовательских книг, сняты сотни фильмов. Режиссерам и писателям апокалипсис видится по разному, лишь в одном едины — люди, по их мнению, смогут выжить на земле. Но такой трактовки требует сюжет. А как будет на самом деле?

Существует сегодня несколько теорий о том, каким будет постъядерный мир. Согласно исследованию американских ученых Оуэна, Робока и Турко, попытавшихся смоделировать конфликт с применением ядерного оружия между Индией и Пакистаном, в атмосферу будут выброшены 6,6 миллиона тонн сажи. Это приведет к снижению среднего значения температуры на Земле на 1,25 градуса Цельсия. Радиоактивные осадки будут некоторое время выпадать во всем мире, отчего люди будут гибнуть и тяжело болеть даже в благополучных и удаленных от конфликта странах.

От радиоактивного заражения и недостатка медпомощи погибнет около миллиарда человек, а в результате снижения урожайности в мире (из-за ранних постъядерных заморозков, снижения температуры и сокращения объема осадков), число голодающих на планете возрастет ещё на полтора миллиарда (сегодня на планете голодает 850 миллионов людей). Существенно подорожает еда во всем мире. Подобный сценарий назван учеными «ядерной осенью». Но это, как говорится, ещё «цветочки».

Вариант первый

Ряд ученых считает, что если в ядерном конфликте «схлестнутся» Россия и США, начнется ядерная зима, человечество может погибнуть, а существование высших форм жизни на нашей планете будет невозможно. К таким выводам, в свое время, независимо пришли ученые В. В. Александров и Г. С. Стенчиков в 1983 г., В СССР и команда Карла Сагана из Корнуэлльского универститета США.

Тысячи ядерных взрывов поднимут в воздух сотни миллионов тонн земли, пыли и сажи от пожаров. Города погибнут от огненных торнадо, которые породят пожары. Говорят, высота такого торнадо может достигать пяти километров, он затягивает в себя всё, что попадется и не заканчивается, пока все вокруг не сгорит дотла.

В тропосферу попадет мелкодисперсная пыль от выброшенная смерчами, а поскольку конвекции там нет, пыль «зависнет» на годы, заслоняя солнечный свет. Солнце. На землю опустится сумрак. Посреди лета, даже в тропиках будут заморозки. Земля промерзнет на несколько метров вглубь, дожди прекратятся. Из-за разницы температур медленно остывающей воды в океане и нагретой суши, начнутся невиданные штормы.

Но ощутить и увидеть все это, по мнению авторов гипотезы, будет, в общем-то некому. Ядерной весны не увидит никто. Не погибшие от взрывов растения, животных и насекомых, сожжет радиация, оставшиеся вымрут от недостатка пищи и воды. Поверхность не замерзших рек, морей, а через некоторое время и медленно остывающих океанов будет усеяна страшно воняющей рыбой и погибшими морскими животными, погибнет даже планктон.

Все пищевые цепочки будут разорваны. Быть может, на планете останутся какие-то низшие формы жизни, — простейшие, мох, лишайники. Но высшие — включая, кстати, крыс и тараканов — погибнут.

Теория вторая — альтернативная

Она подробно изложена в статье И. Ибдурагимова «О несостоятельности концепции «ядерной ночи» и «ядерной зимы» вследствие пожаров после ядерного поражения».

Главный постулат, который обращает на себя внимание заключается в том, что уже произведены сотни ядерных испытаний, которые не дали кумулятивного эффекта, не создали огненных смерчей и не выбросили тысячи тонн пыли в атмосферу. Более того, взрывы крупнейших на планете вулканов, мощность которых во много раз превышала мощность любых, созданных человеком ядерных устройств. И пыль не закрыла атмосферу, хотя выбросы её были чудовищными. Атмосфера земли слишком велика, чтобы быть засоренной полностью даже в результате ядерной войны.

Ситуация, аналогичная той, которая по мысли авторов гипотезы вызывает огненные смерчи в городах, возникает и в результате масштабных лесных пожаров, когда горят одновременно миллионы квадратных километров леса. Но смерчей там не наблюдается, а выброс сажи в результате таких пожаров, в десятки раз меньше, чем рассчитано создателями теории «ядерной зимы». Почему? Горючая масса распределена на большой площади, а не сконцентрирована в одном месте. Примерно так же будет и в городах, где горючие вещества, как по полочкам разложены в разных местах по квартирам и зданиям. В таком случае, сгорает до 20% всех горючих материалов — и не более. На большее не хватит энергии, даже самого большого пожара. А значит - может не быть и огненных смерчей, которые наполнят тропосферу пылью.

Даже если огненный шторм и образуется, возникнет мощный поток воздуха в зону турбулентности, эффективность сгорания возрастет и... сажи будет намного меньше. Не говоря уже о том, что в эпицентрах ядерного взрыва и на определенном отдалении от них выгорит практически всё, безо всякой сажи.

Теперь — о радиации. Безусловно, радиоактивное заражение чрезвычайно опасно и гибельно для человека. И эта страшная угроза никуда не исчезнет. Но всё-таки, люди, даже сейчас умудряются выживать в условиях повышенного радиацинного фона, например, в Чернобыльской зоне, где я бывал и сам. Летом, если, конечно, не знать о заражении, любой путешественник будет потрясен красотами нетронутой природы этих мест. В зоне бушует растительность, много животных, водоемы кишат рыбой. Так что, по-крайней мере, флора и фауна там точно никуда не исчезли - они приспособились.

Выходит, принципиально, ядерной зимы, вообще, может не быть? Вполне. Существует гипотеза, что исследования «ядерной зимы», проведенные и популяризированные в восьмидесятых годах прошлого века, были инспирированы разведками США и СССР, с целью отсрочить ядерную войну и (или) стимулировать разоружение и удержать конфликтующие стороны от наращивания производства ядерного оружия. Технология подобных манипуляций называется «Окна Овертона» и является западной разработкой, что также наводит на определенные размышления.

А реальная «ядерная война», возможно, будет тяжелым и неизбежным эпизодом в развитии человечества, но отнюдь не смертельным. Её, как и последствия «ядерной зимы» можно будет пережить в незатронутых ударами местах или, например, в соответствующих бункерах.

Выжить в бункере

Современные исследования (точнее, натурные испытания), свидетельствуют, что в результате ядерных взрывов (будут сразу же раздавлены сейсмической волной) лишь те подземные убежища, которые окажутся менее, чем в ста метрах от эпицентров.

Поэтому, в хорошо оборудованных подземных бетонных бункерах сможет продолжительное время выживать довольно большое количество людей — может быть даже тысячи. Даже если первое время выходить им будет некуда, в случае, если находиться снаружи из-за пыли и радиоактивного заражения будет невозможно, до десятилетия (а больше ядерная зима вряд-ли продолжится) в таком убежище можно продержаться.

По мнению писателя Дмитрия Глуховского, люди смогут выжить даже где-нибудь в метро и подземных коммуникациях. Хотя это и очень спорное утверждение. Тоннели существуют благодаря развитой инфраструктуре по их ремонту и обслуживанию. Даже если происходит теракт или катастрофа — для метро это трагедия с жертвами и разрушениями. А без присмотра через некоторое время тоннели подземки начнут ветшать и рушиться сами...Запасов топлива в неспециализированных подземных сооружениях хватит ненадолго. Если будет вентиляция с противорадиационными фильтрами — это, конечно, хорошо, но без ремонта она тоже долго не протянет. Словом, этот сценарий нуждается в тщательной проверке «разрушителями легенд» Джейми Хайнеманом и Адамом Сэвиджем.

Единственная проблема, которая может возникнуть в замкнутом пространстве бункера или тоннеля метро — социальные взаимоотношения. Деваться из бункера будет некуда, поэтому, лидером там вполне может стать сильнейший — например, начальник охраны или старший дежурный офицер. А всех остальных он силой и угрозами заставит подчиняться себе. И устроит кошмар, похлеще того, что будет происходить наверху. К примеру, создаст гарем из жен и дочерей пожилых политиков, пытающихся переждать ядерный кошмар. Кто-то из живущих под землей может не выдержать, сойти с ума либо сорваться и убить кого-то или всех, кто находится в бункере. Особенно это вероятно, если там будет существовать социальное неравенство между разными группами людей.

Возможно, читателю такое допущение покажется издевательской сатирой, но к сожалению, это вполне реально.

Неочевидно и насколько будет надежна связь между таким бункером и оставшимися в живых снаружи. На этот социальный парадокс намекал в своей книге «Парабеллум» ещё небезызвестный Александр Зиновьев.

Лучше — миром...

Разумеется, лучше всего, если ужасы ядерной войны нас минуют. И без этого кошмара жизнь человечества трудна и полна опасностей. И всё-таки лучше помнить о том, что может однажды произойти...

Ядерное оружие истребляет абсолютно все на своем пути, это страшное средство массового поражения. Факторы ядерного взрыва оказывают разрушительное действие на инфраструктуру, стратегически значимые объекты. Губительные последствия нарушают экологию, озоновый слой, наносят вред флоре, фауне, акватории.

В мире количество «ядерных держав» постоянно увеличивается. Даже незначительного запаса отдельной страны хватит для полного истребления жизни на земле.

Виды взрывов от ядерных бомб

Классификация атомных взрывов зависит от назначения и цели удара. По видам они делятся на:

Наземные

Такой ядерный взрыв происходит на поверхности, либо на незначительном отдалении. Светящаяся область принимает полусферическую форму. Появляется внушительная воронка, ее диаметр обусловлен тротиловым эквивалентом боеголовки.

Разрушает строения, поражает людей (войска).

Подземные

Взрыв атомной бомбы происходит в земле, светящаяся зона часто не заметна. В атмосферу выбрасывается гигантский столб, состоящий из смеси радиоактивных элементов и грунта. Сильное влияние на грунт создает эффект землетрясения, возникает ударная и колебательная волна, появляется глубокая воронка.

Разрушает подземные стратегические объекты, проходы в горах.

Надводные

Атомный взрыв образует облако из смеси водных капель, пара и радиоактивных осколков бомбы. Низкое световое излучение. Происходит заражение акватории, прибрежной зоны. Возникают огромные волны, цунами.

Уничтожает корабли, нефтяные вышки, военно-морские суда и базы.

Подводные

После взрыва ядерной бомбы не видно вспышку. Из воды устремляется вверх полый водяной столб, который вершит облако пара. Через секунды столб распадается, образуя базисную волну. Это радиоактивный туман, распространяющийся по всем направлениям от эпицентра. Спустя время выпадает радиоактивными осадками.

Уничтожает военные корабли, подводные лодки.

Воздушные

Пылевой столб и облако не соединяются, световая зона не касается поверхности. Эпицентр располагается на земле, под атомным взрывом. Имеет мощное световое излучение и крайне высокую температуру. Вспышку сопровождает громкий и резкий звук.

Поражает аэродромы, здания, самолеты, войска.

Высотные

Вспышка происходит на десятикилометровой высоте. Взрыв ядерной бомбы формирует светящуюся шарообразную зону, а позже преобразует ее в кольцевое облако. Высокая сила излучения и радиации. Отсутствует столб, ударная волна довольно слабая.

Блокирует радиоволны (ультразвук). Уничтожает космические корабли, космические спутники, ракеты. Практически нет радиоактивного воздействия на землю.

О факторах ядерного взрыва

Взрыв ядерной бомбы производит большой объем разрушительной энергии. Она выделяется за счет неуправляемой цепной реакции тяжелых ядер и термоядерного взаимодействия. Мощная сила мгновенно убивает людей и животных на внушительном расстоянии от эпицентра, которые не успели укрыться. Превращает в пепел деревья, растения, разрушает технику, здания.

Совет: более конкретно ответить на вопрос, как выжить после атомного удара и попытаться избежать нижеописанных факторов, может ответить смежный материал о .

Световое излучение

Световое излучение – мощный фактор ядерного взрыва. Электромагнитная энергия включает в себя видимый спектр, ультрафиолет, инфракрасное излучение. Ее источник – шар света, возникающий в момент взрыва, его область состоит из раскаленных фрагментов снаряда, газов и грунта (воды).

Температура области света зависит от тротилового эквивалента атомного снаряда, может достигать 7700 градусов. Свечение исчезает при снижении температуры до 1700 градусов. Его продолжительность может составить от нескольких долей до десятков секунд. Последствия излучения :

  • Возникают сильные пожары, долгое время бушуют огненные штормы.
  • Многие материалы, деревья воспламеняются, обугливаются, пластик образует ядовитую лаву.
  • Люди и животные получают ожоги различной степени. Высокая вероятность получить частичную, полную слепоту.
  • Летальный исход.

Укрыться от излучения можно за любой преградой, которая не пропускает свет. Его действие ниже в туман, смог, при высокой запыленности.

Ударная волна

От вида взрыва зависит, сколько процентов выделившейся энергии придется на ударную волну, обычные показатели 10-50 %, это основной поражающий фактор ядерного взрыва. Волна – сжатая среда, равномерно расширяется от эпицентра, превышает звуковую скорость. Ее появление и действие разделяется на 5 этапов:

  1. Начало взрыва – появление огненного шара.
  2. Давление и температура в центре заставляют отделиться передний фронт, исчезает свечение, волна перестает быть видимой. За первые 15 секунд она преодолевает расстояние почти 6 км.
  3. При подходе ударной волны в пространстве возрастает давление, температура. Воздушные массы начинают движение в одном направлении с ударной волной, этот фактор ядерного взрыва особенно разрушителен.
  4. Удаляясь, давление переднего фронта ослабевает, разряжается (меньше атмосферного). Воздушная масса поворачивает вспять.
  5. Устанавливается атмосферное давление, воздушные массы останавливаются.

С момента вспышки, возникшей от взрыва ядерной бомбы, у человека есть несколько секунд, чтобы укрыться от волны. Предпочтение следует отдавать подвалам, подземным помещениям, котлованам они менее подвержены воздействию разрушительной силы. Чем дальше человек от эпицентра, тем больше имеет шансов на выживание.

Проникающая радиация

Проникающая радиация – испускаемые из эпицентра атомного взрыва потоки нейронов и гамма-излучение. Ее зона поражения не больше 2 – 3 км, поглощается атмосферой. Время действия до 20 секунд. Проникающая радиация и световое излучение – основные факторы поражения в космосе, стратосфере. Последствия радиации :

  • Лучевая болезнь различной степени, поражение кожных покровов, слизистых оболочек.
  • Выход аппаратуры из строя.
  • Разрушение кристаллической решетки материалов.
  • Радиационное заражение местности, вследствие оседания продуктов атомного взрыва на поверхностях, на протяжении двух – шести недель выпадают радиоактивные осадки.

Для защиты используют металлы с большой плотностью (свинец, железо). Укрытия с толстыми стенами также ослабляют действие гамма-излучений.

Электромагнитный импульс

Факторы ядерного взрыва запускают разрушающий процесс не только для живого. Электромагнитные импульсы, вызываемые ударом, нацелены на повреждение военной техники, электротехнической, радиоэлектронной и эхолокационной аппаратуры. Электромагнитный импульс наводит токи и напряжения, вызывает:

  • пробой изоляционного материала;
  • перегорание предохранителей;
  • порчу полупроводников;
  • повреждение электрических машин, трансформаторов, подстанций.

Наиболее разрушительное действие электромагнитный импульс приносит, если взрыв ядерной бомбы более 30 км; слабое воздействие – когда его высота не больше 4 км.

Сейсмовзрывные волны

Наземные и воздушные атомные взрывы образуют колебания поверхности, которые распространяются по направлению от эпицентра. Появляются вследствие ударной волны или передачи энергии грунту. Поражающий фактор :

  1. Деформация, завал шахт, котлованов.
  2. Происходит разрушение зданий, техники, оборудования из-за возникшей динамической нагрузки.

Колебания создают перегрузки, акустические волны, которые негативно влияют на людей.

Последствия ядерного взрыва

Результаты атомных взрывов могут носить глобальный разрушительный характер. В результате многочисленных бомбардировок будет причинен непоправимый вред жизни на планете, в том числе экологии и озоновому слою. Сразу после ударов начинаются неотвратимые климатические изменения.

Возможно планомерное снижение температуры. Любой вид ядерного взрыва поднимает в атмосферу колоссально большое количество пепла, пыли и мелких частиц. Образуются облака, смог – они встают непреодолимым барьером на пути у солнечного света. Наступает мрак, поверхность земли начинает стремительно остывать.

Вопросами оценки последствий возможной ядерной войны ученые начали заниматься только с 1982 года..

Известно, что сценарии ядерной войны могут быть разными, поэтому отобраны наиболее вероятные. Если рассматривать наиболее «щадящие» варианты широкомасштабной ядерной войны, когда в течение нескольких дней в северном полушарии будет взорвано около 40% имеющихся ядерных боеприпасов, общей мощностью примерно 5000 Мт, то будут следующие последствия, с которыми согласно большинство ученых мира:

1. Прямые потери от поражающих факторов ядерных взрывов. В первые дни погибнет примерно 1 млрд. 150 млн. человек, столько же будет тяжело раненных, из них умрет не менее 70%. С учетом радиоактивного заражения потери составят 30–50% от населения Земного шара.

2. Наступит «ядерная ночь» за счет поднятых в атмосферу дыма и пыли. Так как в этом случае поступление солнечной энергии будет блокировано на 90%. «Ядерная ночь» продлится в северном полушарии от 1,5 до 8 месяцев, в южном – от 1 до 4-х. Фотосинтез прекратится как на земле, так и в мировом океане.
В результате нарушатся все пищевые цепочки: погибнут растения, затем животные, наступит голод для человечества.

3. Наступит «ядерная зима». Температура понизится в северном полушарии на 30–43 0 С (по данным ученых СССР – на
15–20 0 С), в южном – на 15– 20 0 С. В результате скачкообразного понижения температуры, а также, учитывая, что «ядерная зима» продлится в северном полушарии до года, в южном – до 10 месяцев, погибнут все сельскохозяйственные культуры, земля промерзнет на глубину до 1 м, пресной воды не будет, наступит голод.

4. В результате изменения климата в различных районах мира возрастет количество стихийных бедствий, прежде всего бурь, ураганов, засух и наводнений.

5. Возникнут пожары. Выгорят леса (источники кислорода и утилизации углекислого газа) на площади не менее 1 миллиона кв.км. Пожары в городах вызовут выделение токсичных газов в концентрациях, которые приведут к отравлениям всего живого. Изменится газовый состав атмосферы с непредсказуемыми последствиями для биологического мира.

6. Озоновый слой уменьшится на 17–70%. Для его восстановления потребуется не менее 10 лет. В течение этого времени ультрафиолетовое излучение Солнца будет в 100 раз более интенсивным, чем в нормальных условиях, и оно губительно для всего живого.

Ожидаются тяжелые генетические последствия, массовая гибель людей и животных от онкологических заболеваний, вырождение человечества. Правда, в первые месяцы после ядерных ударов ультрафиолетовое излучение Солнца будет поглощаться пылью и сажей, и влияние его будет незначительным.



7. По данным Шведской Академии Наук из-за отсутствия топлива, питьевой воды, в результате голода, развала медицинского обеспечения и т.д. возникнут пандемии с непредсказуемыми последствиями.

Если на планете начнется ядерная война, в результате которой произойдут взрывы ядерных бомб, это приведет к тепловому излучению, а также радиоактивным осадкам локального характера. Косвенные последствия, типа уничтожения систем распределения энергии, коммуникационных систем и общественных устоев, вероятнее всего приведут к серьезным проблемам.

Влияние последствий ядерной войны на пресноводные экосистемы. Вероятные климатические изменения сделают уязвимыми экосистему материковых водоемов.Водоемы, которые содержат пресную воду, подразделяют на два вида: проточные (ручьи и реки) и стоячие (озера и пруды). Резкое понижение температуры и уменьшение уровня осадков скажется на стремительном сокращении количества пресной воды, которая запасена в озерах и реках. На грунтовые воды изменения повлияют менее заметно и медленнее. Качества озер устанавливаются их содержанием питательных веществ, подстилающими породами, размерами, донными субстратами, количеством атмосферных осадков и другими параметрами. Основными показателями реакции пресноводных систем на климатические изменения являются вероятное понижение температуры и уменьшение инсоляции. Выравнивание колебаний температуры преимущественно выражено в больших водоемах с пресной водой. Однако экосистемы пресных водоемов в отличие от океана вынуждены значительным образом пострадать от перепада температуры, как следствие того, что произойдет ядерная война. Вероятность влияния низких температур на протяжении длительного периода может привести к образованию толстого слоя льда на поверхности водоемов. Как результат поверхность мелководного озера покроется значительным слоем льда, охватив большую часть его территории. Необходимо отметить, что большинство озер, из числа тех, которые известны и доступны человеку, котируются как мелкие. Такие водоемы находятся в группе, которая будет подвержена замерзанию почти на всю глубину. К более долгосрочным и серьезным последствиям ядерная война приведет изменения климатических условий. В ход такого развития событий, освещенность и температура вернуться к первоначальным уровням, в период приближения зимы. Если ядерная война произойдет зимой и вызовет климатические волнения в этот период, в местах, где вода озер имеет нормальную температуру, приблизительную нулю, это повлечет за собой увеличение ледяного покрова. Угроза для мелководных озер слишком явная, так как возможно промерзание воды до самого дна, что приведет к гибели основного числа живых микроорганизмов. Таким образом, реальные климатические возмущения в зимний период коснутся пресноводных экосистем, которые не замерзают в нормальных условиях, и приведут к весьма серьезным биологическим последствиям. Текущие нарушения климата, начавшиеся весной или задержавшиеся как результат того, что произошла ядерная война, могут оттянуть процесс таяния льдов. С приходом морозов в конце весеннего периода, возможно, произойдет глобальная гибель живых составляющих экосистем под влиянием снижения температуры и уменьшением освещенности. В случае если снижение температуры до минусовой отметки произойдет летом, последствия могут быть не столь губительными, потому что многое стадии развития жизненных циклов будут позади. Будущей весной, продолжительность воздействия скажется особенно остро. Возмущения климата осенью приведут к наименьшим последствиям для экосистемы северных водоемов, потому, что на тот момент все живые организмы успеют пройти стадии репродукции. Даже если численность фитопланктона, беспозвоночных и редуцентов уменьшится до минимального уровня, это не конец света, как только климат вернется к нормальному состоянию, они возродятся.



Последствия ядерной войны. В результате проведения анализа данных по восприимчивости экосистем к последствиям, которые повлечет за собой ядерная война на экологическое окружение, очевидными становятся следующие выводы:

Экосистемы планеты уязвимы для возмущений климата экстремального характера. Однако не одинаково, а в зависимости от их географического расположения, типа системы и времени года, в которое возмущения возникнут. В итоге синергизма причин и распространения их воздействия от одних к другим экосистемам случаются сдвиги гораздо крупнее, чем можно было бы предвидеть при отдельном действии возмущений. В случае, когда загрязнение атмосферы, радиация и увеличение УВ излучения, воздействуют обособленно, они не приводят к масштабным катастрофическим последствиям. Но если эти факторы проявятся одновременно, результат может быть губительным для экосистем с чувствительной природой из-за своего синергизма, что сравнимо с тем, что наступит конец света для живых организмов. Если случится ядерная война, пожары, возникшие как следствие обмена атомными бомбами, могут оккупировать значительную часть территории.

Возрождение экосистем после влияния климатических катаклизмов острой стадии, последующей за ядерной войной огромного масштаба, будет зависеть от уровня приспособленности к природным нарушениям. В некоторых видах экосистем первостепенный вред может быть достаточно большим, а возобновление медлительным, причем абсолютное возрождение до изначального не тронутого состояния вообще невозможно.

Важную степень влияния на экосистемы могут оказать эпизодические радиоактивные осадки.

Значительные перепады температуры могут привести к очень большому урону, даже если действовать они будут на протяжении короткого промежутка времени. Экосистема морей достаточно уязвима для длительного уменьшения освещенности. Для описания реакций биологического характера на стрессы планетарного масштаба нужна разработка грядущего поколения моделей экосистем и создание вместительной базы данных по их единичным компонентам и всем экосистемам в общем, подчиняющимся разным экспериментальным нарушением. С момента, когда были предприняты важные попытки экспериментальным путем описать воздействия, к которым приведет ядерная война, и ее влияние на биологические схемы прошло достаточно много времени. На сегодня данная проблема является одной из самых важных, которые встречались на пути существования человечества.

Существует три возможных глобальных эффекта мирового ядерного конфликта. Первый из них - это "ядерная зима” и "ядерная ночь”, когда температура на всем земном шаре резко упадет на десятки градусов, а освещенность будет меньше, чем безлунной ночью. Жизнь на Земле окажется отрезанной от своего главного энергетического источника - солнечного света. Второе последствие- радиоактивное загрязнение планеты в результате разрушения атомных электростанций, хранилищ радиоактивных отходов. И, наконец, третий фактор - глобальный голод. Годы ядерной войны приведут к резкому падению сельскохозяйственных культур. Сама природа воздействия крупномасштабной ядерной войны на окружающую среду такова, что, как бы и когда бы она ни началась, конечный результат одинаков - глобальная биосферная катастрофа.

Многочисленные ядерные взрывы приведут к тепловому излучению и локальным радиоактивным осадкам. Весьма серьезными могут быть и косвенные последствия, такие как уничтожение коммуникаций, систем распределения энергии и общественных институтов.