Криволинейное движение. Разработка урока по физике "Криволинейное движение" (класс) План урока прямолинейное и криволинейное движение

В зависимости от формы траектории движение можно подразделять на прямолинейное и криволинейное. Чаще всего можно столкнуться с криволинейными движениями, когда траектория представлена в виде кривой. Примером такого вида движения является путь тела, брошенного под углом к горизонту, движение Земли вокруг Солнца, планет и так далее.

Рисунок 1 . Траектория и перемещение при криволинейном движении

Определение 1

Криволинейным движением называют движение, траектория которого представляет собой кривую линию. Если тело движется по криволинейной траектории, то вектор перемещения s → направлен по хорде, как показано на рисунке 1 , а l является длиной траектории. Направление мгновенной скорости движения тела идет по касательной в той же точке траектории, где в данный момент располагается движущийся объект, как показано на рисунке 2 .

Рисунок 2 . Мгновенная скорость при криволинейном движении

Определение 2

Криволинейное движение материальной точки называют равномерным тогда, когда модуль скорости постоянный (движение по окружности), и равноускоренным при изменяющемся направлении и модуле скорости (движение брошенного тела).

Криволинейное движение всегда ускоренное. Это объясняется тем, что даже при неизмененном модуле скорости, а измененном направлении, всегда присутствует ускорение.

Для того чтобы исследовать криволинейное движение материальной точки, применяют два метода.

Путь разбивается на отдельные участки, на каждом из которых его можно считать прямолинейным, как показано на рисунке 3 .

Рисунок 3 . Разбиение криволинейного движения на поступательные

Теперь для каждого участка можно применять закон прямолинейного движения. Такой принцип допускается.

Самым удобным методом решения считается представление пути в качестве совокупности нескольких движений по дугам окружностей, как показано на рисунке 4 . Количество разбиений будет намного меньше, чем в предыдущем методе, кроме того, движение по окружности уже является криволинейным.

Рисунок 4 . Разбиение криволинейного движения на движения по дугам окружностей

Замечание 1

Для записи криволинейного движения необходимо уметь описывать движение по окружности, произвольное движение представлять в виде совокупностей движений по дугам этих окружностей.

Исследование криволинейного движения включает в себя составление кинематического уравнения, которое описывает это движение и позволяет по имеющимся начальным условиям определить все характеристики движения.

Пример 1

Дана материальная точка, движущаяся по кривой, как показано на рисунке 4 . Центры окружностей O 1 , O 2 , O 3 располагаются на одной прямой. Необходимо найти перемещение
s → и длину пути l во время движения из точки А в В.

Решение

По условию имеем, что центры окружности принадлежат одной прямой, отсюда:

s → = R 1 + 2 R 2 + R 3 .

Так как траектория движения – это сумма полуокружностей, то:

l ~ A B = π R 1 + R 2 + R 3 .

Ответ: s → = R 1 + 2 R 2 + R 3 , l ~ A B = π R 1 + R 2 + R 3 .

Пример 2

Дана зависимость пройденного телом пути от времени, представленная уравнением s (t) = A + B t + C t 2 + D t 3 (C = 0 , 1 м / с 2 , D = 0 , 003 м / с 3) . Вычислить, через какой промежуток времени после начала движения ускорение тела будет равно 2 м / с 2

Решение

Ответ: t = 60 с.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Класс: 9

Презентация к уроку






















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока: дать школьникам представление о криволинейном движении, частоте, угловом перемещении, угловой скорости, периоде. Познакомить с формулами для нахождения этих величин и единицами измерения. (Слайды 1 и 2 )

Ззадачи:

Образовательные : дать учащимся представление о криволинейном движении его траектории, величинах его характеризующих, единицах измерения этих величин и формулах для вычисления.
Развивающие :продолжать формирование умений применять теоретические знания для решения практических задач, развивать интерес к предмету и логическое мышление.
Воспитательные : продолжать развивать кругозор учащихся; умение вести записи в тетрадях, наблюдать, замечать закономерности явлений, аргументировать свои выводы.

Оборудование: наклонный жёлоб, шарик, шарик на нити, игрушечный автомобиль, юла, модель часов со стрелками, мультимедийный проектор, презентация.

ХОД УРОКА

1. Актуализация знаний

Учитель.

– Какие виды движения вы знаете?
– Чем отличаются прямолинейные и криволинейные движения?
– В какой системе отсчёта можно говорить об этих видах движения?
– Сравните траекторию и путь для прямолинейного и криволинейного движений. (Слайды 3, 4).

2. Объяснение нового материала

Учитель. Демонстрирую: падение шарика по вертикали, его скатывание по желобу, вращение шарика на нити, перемещение игрушечного автомобиля по столу, падение теннисного мячика брошенного под углом к горизонту.

Учитель. Чем отличаются траектории движения предложенных тел? (Ответы учащихся)
Попробуйте сами дать определения криволинейного и прямолинейного движений. (Запись в тетрадях):
– прямолинейное движение – движение по прямой траектории, причём направление векторов силы и скорости совпадают; (слайд 7)
– криволинейное движение – движение по непрямой траектории.

Рассмотреть два примера криволинейного движения: по ломаной линии и по кривой (Зарисовать, слайды 5, 6 ).

Учитель. Чем отличаются эти траектории?

Ученик. В первом случае траекторию можно разбить на прямолинейные участки и рассмотреть каждый участок отдельно. Во втором случае можно разбить кривую на дуги окружностей и прямолинейные участки Т.о. это движение можно рассматривать как последовательность движений, происходящих по дугам окружностей различного радиуса (Слайд 8)

Учитель. Приведите примеры прямолинейного и криволинейного движения, с которыми вы встречались в жизни.

3. Сообщение ученика. В природе и технике очень часто встречаются движения, траектории которых представляют собой не прямые, а кривые линии. Это криволинейное движение. По криволинейным траекториям движутся в космическом пространстве планеты и искусственные спутники Земли, а на Земле всевозможные средства транспорта, части машин и механизмов, воды рек, воздух атмосферы и т.д.
Если прижать к вращающемуся точильному камню конец стального прутика, то раскаленные частицы, отрывающиеся от камня, будут видны в виде искр. Эти частицы летят с той скоростью, которой они обладали в момент отрыва от камня. Хорошо видно, что направление движения искр совпадает с касательной к окружности в той точке, где пруток касается камня. По касательной движутся брызги от колес буксующего автомобиля. (Слайд 9)

Учитель. Таким образом, мгновенная скорость тела в разных точках криволинейной траектории имеет различное направление, причём, обратите внимание: вектора скорости и силы, действующей на тело, направлены по пересекающимся прямым. (Слайды 10 и 11).
По модулю же скорость может быть всюду одинакова или изменяться от точки к точке.
Но даже если модуль скорости не изменяется, ее нельзя считать постоянной. Скорость – векторная величина. Для векторной величины модуль и направление одинаково важны. А раз меняется скорость , значит есть ускорение. Поэтому криволинейное движение – это всегда движение с ускорением , даже если по модулю скорость постоянная. (Слайд 12).
Ускорение тела, равномерно движущегося по окружности, в любой точке центростремительное , т.е. направлено по радиусу окружности к ее центру. В любой точке вектор ускорения перпендикулярен вектору скорости. (Нарисовать)
Модуль центростремительного ускорения: а ц = V 2 /R (написать формулу), где V – линейная скорость тела, а R – радиус окружности. (Слайды 12, 13)

Учитель. Движение по окружности часто характеризуют не скоростью движения, а промежутком времени, за который тело совершает один полный оборот. Эта величина называется периодом обращения и обозначается буквой Т. (Записать определение периода). Найдем связь между периодом обращения Т и модулем скорости при равномерном движении по окружности радиуса R. Т.к. V = S/t = 2R/Т. (Записать формулу в тетради) (Слайд 14)

Сообщение ученика. Период – это величина, которая достаточно часто встречается в природе и технике . Так, мы знаем. Что Земля вращается вокруг своей оси и средний период вращения равен 24 часам. Полный оборот Земли вокруг Солнца происходит примерно за 365,26 суток. Рабочие колеса гидротурбин делают один полный оборот за время, равное 1 секунде. А винт вертолета имеет период обращения от 0,15 до 0,3 секунды. Период кровообращения у человека равен примерно 21-22 секундам.

Учитель. Движение тела по окружности можно охарактеризовать еще одной величиной – числом оборотов в единицу времени. Ее называют частотой обращения: ν = 1/Т. Единицей измерения частоты: с –1 = Гц. (Записать определение, единицу и формулу ) (слайд 14)

Сообщение ученика. Коленчатые валы двигателей трактора имеют частоту вращения от 60 до 100 оборотов в секунду. Ротор газовой турбины вращается с частотой от 200 до 300 об/с. Пуля, вылетающая из автомата Калашникова, вращается с частотой 3000 об/с.
Для измерения частоты существуют приборы, так называемые круги для измерения частоты, основанные на оптических иллюзиях. На таком круге нанесены черные полоски и стоят частоты. При вращении такого круга черные полоски образуют круг при соответствующей этому кругу частоте. Также для измерения частоты используются тахометры. (Слайд 15)

(Дополнительные характеристики слайды 16, 17)

4. Закрепления материала (слайд18)

Учитель. На этом уроке мы познакомились с описанием криволинейного движения, с новыми понятиями и величинами. Ответьте мне на следующие вопросы:
– Как можно описать криволинейное движение?
– Что называется угловым перемещением? В каких единицах измеряется?
– Что называется периодом и частотой? Как связаны между собой эти величины? В каких единицах измеряются? Как их можно определить?
– Что называется угловой скоростью? В каких единицах она измеряется? Как можно её рассчитать?

(Если остаётся время, можно выполнить экспериментальное задание по определению периода и частоты вращения тела, подвешенного на нити.)

5. Экспериментальная работа: измерение периода, частоты тела, подвешенного на нити и вращающегося в горизонтальной плоскости. Для этого на каждую парту приготовить набор принадлежностей: нить, тело (бусинка или пуговица), секундомер; инструкцию по выполнению работы: тело вращать равномерно, (для удобства работу можно выполнять вдвоём) и измерить время 10 (вспомнить определение полного оборота). (После выполнения работы обсудить полученные результаты). (Cлайд 19)

6. Контроль и самопроверка

Учитель. Следующее задание на проверку, как вы усвоили новый материал. У каждого из вас на столах лежат тесты и две таблицы, в которые вы должны внести букву ответа. Одну из них вы подпишите и сдадите на проверку. (Тест 1 выполняет 1 вариант, тест 2 – второй вариант)

Тест 1 (слайд 20)

1. Примером криволинейного движения являются...

а) падение камня;
б) поворот машины на право;
в) бег спринтера на 100 – метровке.

2. Минутная стрелка часов делает один полный оборот. Чему равен период обращения?

а) 60 с; б) 1/3600 с; в) 3600 с.

3. Колесо велосипеда делает один оборот за 4 с. Определите частоту вращения.

а) 0,25 1/с; б) 4 1/с; в) 2 1/с.

4. Винт моторной лодки делает 25 оборотов за 1 с. Чем, равна угловая скорость винта?

а) 25 рад/с; б) /25 рад/с; в) 50 рад/с.

5. Определите частоту вращения сверла электрической дрели, если его угловая скорость равна 400 .

а)800 1/с; б) 400 1/с; в) 200 1/с.

Тест 2 (слайд 20)

1. Примером криволинейного движения является…

а) движение лифта;
б) прыжок лыжника с трамплина;
в) падение шишки с нижней ветки ели в безветренную погоду.

2. Секундная стрелка часов делает один полный оборот. Чему равна её частота обращения?

а) 1/60 с; б) 60 с; в) 1 с.

3. Колесо машины делает 20 оборотов за10 с. Определите период обращения колеса?

а) 5 с; б) 10 с; в) 0,5 с.

4. Ротор мощной паровой турбины делает 50 оборотов за 1 с. Вычислите угловую скорость.

а) 50 рад/с; б) /50 рад/с; в) 10 рад/с.

5. Определите период обращения звёздочки велосипеда, если угловая скорость равна.

а) 1 с; б) 2 с; в) 0,5 с.

Ответы на тест 1: б; в; а; в; в
Ответы на тест 2: б; а; в; в; б(слайд 21)

7. Подведение итогов

8. Домашнее задание: § 18, 19, вопросы к §§, упр.17, (устно) (слайд 21)

Криволинейное движение – это движение, траектория которого представляет собой кривую линию (например, окружность, эллипс, гиперболу, параболу). Примером криволинейного движения является движение планет, конца стрелки часов по циферблату и т.д. В общем случае скорость при криволинейном движении изменяется по величине и по направлению.

Криволинейное движение материальной точки считается равномерным движением, если модуль постоянен (например, равномерное движение по окружности), и равноускоренным, если модуль и направление изменяется (например, движение тела, брошенного под углом к горизонту).

Рис. 1.19. Траектория и вектор перемещения при криволинейном движении.

При движении по криволинейной траектории направлен по хорде (рис. 1.19), а l – длина . Мгновенная скорость движения тела (то есть скорость тела в данной точке траектории) направлена по касательной в той точке траектории, где в данный момент находится движущееся тело (рис. 1.20).

Рис. 1.20. Мгновенная скорость при криволинейном движении.

Криволинейное движение – это всегда ускоренное движение. То есть ускорение при криволинейном движении присутствует всегда, даже если модуль скорости не изменяется, а изменяется только направление скорости. Изменение величины скорости за единицу времени – это :

Где v τ , v 0 – величины скоростей в момент времени t 0 + Δt и t 0 соответственно.

В данной точке траектории по направлению совпадает с направлением скорости движения тела или противоположно ему.

— это изменение скорости по направлению за единицу времени:

Нормальное ускорение направлено по радиусу кривизны траектории (к оси вращения). Нормальное ускорение перпендикулярно направлению скорости.

Центростремительное ускорение – это нормальное ускорение при равномерном движении по окружности.

Полное ускорение при равнопеременном криволинейном движении тела равно:

Движение тела по криволинейной траектории можно приближённо представить как движение по дугам некоторых окружностей (рис. 1.21).

Рис. 1.21. Движение тела при криволинейном движении.

Сценарий урока № 26

Тема урока: Прямолинейное и криволинейное движение. Движение тела по окружности с постоянной по модулю скоростью.

Предмет: физика

Учитель: Апасова Н.И.

Класс: 9

Учебник: Физика. 9 класс: учебник/ А. В. Перышкин, Е. М. Гутник.-3-е изд., стереотип.- М.: Дрофа, 2016

Тип урока: урок открытия нового знания

Цели урока:

Создать условия для формирования у учащихся представления о криволинейном движении, величинах, его характеризующих;

Способствовать развитию наблюдательности, логического мышления;

Способствовать формированию научного мировоззрения и интереса к физике.

Задачи урока:

- приводить примеры прямолинейного и криволинейного движения тел; называть условия, при которых тела движутся прямолинейно и криволинейно; вычислять модуль центростремительного ускорения; изображать на рисунках векторы скорости и центростремительного ускорения при движении тела по окружности; объяснять причину возникновения центростремительного ускорения при равномерном движении по окружности (предметный результат);

- овладеть навыками самостоятельного приобретения новых знаний о движении тела по окружности; применять эвристические методы при решении вопроса о причине возникновения центростремительного ускорения при равномерном движении по окружности; овладеть регулятивными УУД при решении расчетных и качественных задач; развивать монологическую и диалогическую речь (метапредметный результат);

Сформировать познавательный интерес к видам механического движения; развивать творческие способности и практические умения по решению качественных и расчетных задач на равномерное движение точки по окружности; уметь принимать самостоятельные решения, обосновывать и оценивать результаты своих действий (личностный результат).

Средства обучения: учебник, сборник задач; компьютер, мультимедийный проектор, презентация «Прямолинейное и криволинейное движение»; наклонный жёлоб, шарик, шарик на нити, игрушечный автомобиль, юла.

I . Организационный момент (мотивация к учебной деятельности)

Цель этапа: включение учащихся в деятельность на личностно-значимом уровне

Приветствие, проверка готовности к уроку, эмоциональный настрой.

«Мы истинно свободны, когда сохранили способность рассуждать самостоятельно». Цицерон.

Слушают, настраиваются на урок.

Личностные: внимание, уважение к окружающим

Коммуникативные: планирование учебного сотрудничества

Регулятивные: саморегуляция

II . Актуализация знаний

Цель этапа: повторение изученного материала, необходимого для «открытия нового знания», и выявление затруднений в индивидуальной деятельности каждого учащегося

Организует взаимопроверку домашнего задания и беседу по контрольным вопросам

1. Сформулировать закон всемирного тяготения. Записать формулу.

2. Верно ли, что притяжение к Земле является одним из примеров всемирного тяготения?

3. Как меняется сила тяжести, действующая на тело, при его удаления от Земли?

4. По какой формуле можно рассчитать действующую на тело силу тяжести, если оно находится на небольшой высоте на Землёй?

5. В каком случае сила тяжести, действующая на одно и то же тело, будет больше: если это тело находится в экваториальной области земного шара или на одном из полюсов? Почему?

6. Что вы знаете об ускорении свободного падения на Луне?

№2,3 – устно

№ 4 – у доски

Мы знаем, что все тела притягиваются друг к другу. В частности, Луна, например, притягивается к Земле. Но возникает вопрос: если Луна притягивается к Земле, почему она вращается вокруг нее, а не падает на Землю?

Для того чтобы ответить на этот вопрос, необходимо рассмотреть виды движения тел.

Какие виды движений мы изучили?

Какое движение называется равномерным?

Что называется скоростью равномерного движения?

Какое движение называется равноускоренным?

Что такое ускорение тела?

Что такое перемещение? Что такое траектория?

Отвечают на вопросы

Взаимопроверка задания

Отвечают на вопросы

Познавательные: логические умозаключения; осознанно и произвольно строят речевое высказывание в устной форме

Регулятивные: умение слушать в соответствие с целевой установкой; уточнение и дополнение высказываний обучающихся

II Ӏ. Постановка цели и задач урока.

Цель этапа: создание проблемной ситуации; фиксация новой учебной задачи

Постановка проблемы.

Демонстрация опыта: вращение юлы, вращение шарика на нити

Как можно охарактеризовать их движения? Что общего в их движении?

Значит, наша задача на сегодняшнем уроке ввести понятие прямолинейного и криволинейного движения. Движения тела по окружности. Слайд 1

Для постановки целей я предлагаю проанализировать схему механического движения. Слайд 2.

Какие цели к нашей теме поставим? Слайд 3

Высказывают предположение

Записывают тему урока, формулируют цели

Регулятивные: регуляция учебной деятельности; умение слушать в соответствие с целевой установкой

Личностные: готовность и способность к саморазвитию.

I V. Проблемное объяснение нового знания

Цель этапа: обеспечение восприятия, осмысления и первичного закрепления учащимися знаний о криволинейном движении, величинах, его характеризующих

Объяснение нового материала с показом презентации, демонстрацией опытов, организацией самостоятельной работы учащихся с учебником

Демонстрация: падение шарика по вертикали, его скатывание по желобу, вращение шарика на нити, перемещение игрушечного автомобиля по столу, падение шарика, брошенного под углом к горизонту.

Чем отличаются движения предложенных тел?

Попробуйте сами дать определения криволинейного и прямолинейного движений.
– прямолинейное движение – движение по прямой траектории

– криволинейное движение – движение по непрямой траектории.

Задание 1. Выявить основные признаки прямолинейного и криволинейного движения

1. Прочитайте § 17

2. Опираясь на рис. 34 стр. 70 запишите в тетради признаки, которыми обладает тело, движущееся:

а) прямолинейно (1 б)

б) криволинейно (1 б)

3. Выберите верное утверждение: (2 б)

А: если вектор силы и вектор скорости направлены вдоль одной прямой, то тело движется прямолинейно

Б: если вектор силы и вектор скорости направлены вдоль пересекающихся прямых, то тело движется криволинейно

1) только А 2)только Б 3) и А, и Б 4)ни А, ни Б

Сделайтевывод от чего зависит вид траектории движения.

Действие на тело силы в одних случаях может привести только к изменению модуля вектора скорости этого тела, а в других – к изменению направления скорости.

Рассмотреть два примера криволинейного движения: по ломаной линии и по кривой. Слайды 7,8

Чем отличаются эти траектории?

Задание 2. Представить движение по любой криволинейной траектории как движение по окружности.

1. Рассмотреть рис. 35 стр. 71, проанализировать его, опираясь на текст учебника.

2. Изобразите собственную криволинейную траекторию и представьте её в виде совокупности дуг окружностей разных радиусов. (1 б)

Т.о. это движение можно рассматривать как последовательность движений, происходящих по дугам окружностей различного радиуса. Слайд 9

Задание 3. Установить, как направлен вектор линейной скорости при движении по окружности.

1. Прочитайте § 18 стр. 72 .

2. Изобразите в тетради вектор скорости в точках В и С и сделайте вывод. (2б)

Приведите примеры криволинейного движения, с которыми вы встречались в жизни.

По криволинейным траекториям движутся в космическом пространстве планеты и искусственные спутники Земли, а на Земле всевозможные средства транспорта, части машин и механизмов, воды рек, воздух атмосферы и т.д. Слайд 10.

Если прижать к вращающемуся точильному камню конец стального прутика, то раскаленные частицы, отрывающиеся от камня, будут видны в виде искр. Эти частицы летят с той скоростью, которой они обладали в момент отрыва от камня. Хорошо видно, что направление движения искр совпадает с касательной к окружности в той точке, где пруток касается камня. По касательной движутся брызги от колес буксующего автомобиля .

Таким образом, мгновенная скорость тела в разных точках криволинейной траектории имеет различное направление, причём, обратите внимание: вектора скорости и силы, действующей на тело, направлены по пересекающимся прямым. Слайд 11.

По модулю же скорость может быть всюду одинакова или изменяться от точки к точке. Но даже если модуль скорости не изменяется, ее нельзя считать постоянной. Скорость – векторная величина. А раз меняется вектор скорости , значит, есть ускорение. Поэтому криволинейное движение – это всегда движение с ускорением , даже если по модулю скорость постоянная. (Слайд 12).

Задание 4. Изучить п онятие центростремительного ускорения.

Ответьте на вопросы:

2) Куда направлено ускорение тела при движении по окружности с постоянной по модулю скоростью? (1 б)

3) По какой формуле можно вычислить модуль вектора центростремительного ускорения? (1 б)

4) По какой формуле рассчитывается модуль вектора силы, под действием которой тело движется по окружности с постоянной по модулю скоростью? (1 б)

Ускорение тела, равномерно движущегося по окружности, в любой точке центростремительное , т.е. направлено по радиусу окружности к ее центру. В любой точке вектор ускорения перпендикулярен вектору скорости. Слайд 13
Модуль центростремительного ускорения: а
ц = V 2 /R где V – линейная скорость тела, а R – радиус окружности . Слайд 14

Из формулы видно, что при одной и той же скорости чем меньше радиус окружности, тем больше центростремительная сила. Так, на поворотах дороги на движущееся тело (поезд, автомобиль, велосипед) должна действовать по направлению к центру закругления тем большая сила, чем круче поворот, т. е. чем меньше радиус закругления.

По II закону Ньютона ускорение всегда сонаправлено с силой, в результате действия которой оно возникает. Это справедливо и для центростремительного ускорения.

Как же направлена сила в каждой точке траектории?

Такая сила называется центростремительной.

Центростремительная сила зависит от линейной скорости: с увеличением скорости она увеличивается. Это хорошо известно всем конькобежцам, лыжникам и велосипедистам: чем с большей скоростью движешься, тем труднее сделать поворот. Шофёры очень хорошо знают, как опасно круто поворачивать автомобиль на большой скорости

Центростремительная сила создается всеми силами природы.

Приведите примеры действия центростремительных сил по их природе:

    сила упругости (камень на веревке);

    сила тяготения (планеты вокруг солнца);

    сила трения (движение на поворотах).

Наблюдают за демонстрацией

Отвечают на вопрос: по виду траектории эти движения можно разделить на движения по прямой линии и по кривой линии

Дают определения. Слайд 4

Выполняют задание

Делают вывод

Слайды 5,6

Отвечают на вопрос: в первом случае траекторию можно разбить на прямолинейные участки и рассмотреть каждый участок отдельно. Во втором случае можно разбить кривую на дуги окружностей и прямолинейные участки

Работают с учебником

Выполняют задание

Работают с учебником

Приводят примеры

Работают с учебником

Записывают формулу

Отвечают на вопрос

Записывают формулу в тетрадь

Приводят примеры

Познавательные: выделение существенной информации; логические умозаключения; осознанно и произвольно строят речевое высказывание в устной форме; умение формулировать вопросы; анализ содержания параграфа.

Коммуникативные: слушание учителя и товарищей, построение понятных для собеседника высказываний.

Регулятивные: умение слушать в соответствие с целевой установкой; планировать свои действия; уточнение и дополнение высказываний обучающихся

V. Первичная проверка понимания

Цель этапа: проговаривание и закрепление нового знания; выявить пробелы первичного осмысления изученного материала, неверные представления уч-ся; провести коррекцию

Решение задач

1. Решение качественных задач

№ 1624-1629(П)

2. Решение расчетных задач

Работают в парах

Участвуют в коллективном обсуждении решения задачи

Регулятивные: планирование своей деятельности для решения поставленной задачи, саморегуляция

Личностные: самоопределение с целью получения наивысшего результата

V ӀΙΙ. Итог урока (рефлексия деятельности)

Цель этапа: осознание уч-ся своей учебной деятельности, самооценка результатов деятельности своей и всего класса

Учитель предлагает учащимся обобщить приобретённые знания на уроке. Подсчитайте количество баллов за правильно выполненные задания и поставьте себе оценку.

21 -19 баллов – оценка «5»

18-15 баллов - оценка «4»

14-10 баллов – оценка «3»

Предлагает вернуться к целям и задачам урока, проанализировать их выполнение

Все ли цели выполнены?

Чему научились?

Я не знал…

Теперь я знаю…

Учащиеся вступают в диалог с учителем, высказывают своё мнение, подводят общий итог урока

Познавательные: умение делать выводы.

Коммуникативные: уметь формулировать собственное мнение и позицию.

Регулятивные: умение осуществлять самоконтроль и самооценку; адекватно воспринимать оценку учителя

ΙХ. Домашнее задание

Цель: дальнейшее самостоятельное применение полученных знаний.

§17,18; ответить на вопросы к параграфам

Упр.17 – устно

Учащиеся записывают домашнее задание, получают консультацию

Регулятивные: организация учащимися своей учебной деятельности.

Личностные: оценивание уровня сложности Д/З при его выборе для выполнения учащимся самостоятельно

https://accounts.google.com


Подписи к слайдам:

Подумай и ответь! 1. Какое движение называется равномерным? 2. Что называется скоростью равномерного движения? 3. Какое движение называется равноускоренным? 4. Что такое ускорение тела? 5. Что такое перемещение? Что такое траектория?

Тема урока: Прямолинейное и криволинейное движение. Движение тела по окружности.

Механические движения Прямолинейное Криволинейное Движение по эллипсу Движение по параболе Движение по гиперболе Движение по окружности

Цели урока: 1. Знать основные характеристики криволинейного движения и связь между ними. 2. Уметь применять полученные знания при решении экспериментальных задач.

План изучения темы Изучение нового материала Условие прямолинейного и криволинейного движения Направление скорости тела при криволинейном движении Центростремительное ускорение Период обращения Частота обращения Центростремительная сила Выполнение фронтальных экспериментальных заданий Самостоятельная работа в форме тестов Подведение итогов

По виду траектории движение бывает: Криволинейное Прямолинейное

Условия прямолинейного и криволинейного движения тел (Опыт с шариком)

стр.67 Запомнить! Работа с учебником

Движение по окружности – частный случай криволинейного движения

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Характеристики движения – линейная скорость криволинейного движения () – центростремительное ускорение () – период обращения () – частота обращения ()

Запомнить. Направления движения частиц совпадает с касательной к окружности

При криволинейном движении скорость тела направлена по касательной к окружности Запомнить.

При криволинейном движении ускорение направлено к центру окружности Запомнить.

Почему ускорение направлено к центру окружности?

Определение скорости - скорость - период обращения r - радиус окружности

При движении тела по окружности модуль вектора скорости может меняться или оставаться постоянным, но направление вектора скорости обязательно меняется. Поэтому вектор скорости является величиной переменной. Значит движение по окружности всегда происходит с ускорением. Запомнить!

Предварительный просмотр:

Тема: Прямолинейное и криволинейное движение. Движение тела по окружности.

Цели: Изучить особенности криволинейного движения и, в частности, движения по окружности.

Ввести понятие центростремительного ускорения и центростремительной силы.

Продолжить работу по формированию ключевых компетенций учащихся: умения сравнивать, анализировать, делать выводы из наблюдений, обобщать опытные данные на основе имеющихся знаний о движении тела формировать умения использовать основные понятия, формулы и физические законы движения тела при движении на окружности.

Воспитывать самостоятельность, учить детей сотрудничеству, воспитывать уважение к мнению других, пробуждать любознательность и наблюдательность.

Оборудование урока: компьютер, мультемедийный проектор, экран, шарик на резинке, шарик на нити, линейка, метроном, юла.

Оформление: «Мы истинно свободны, когда сохранили способность рассуждать самостоятельно». Цецерон.

Вид урока: урок изучения нового материала.

Ход урока:

Организационный момент:

Постановка проблемы: Какие виды движений мы изучили?

(Ответ: Прямолинейное равномерное, прямолинейное равноускоренное.)

План урока:

  1. Актуализация опорных знаний (физическая разминка) (5 мин)
  1. Какое движение называется равномерным?
  2. Что называется скоростью равномерного движения?
  3. Какое движение называется равноускоренным?
  4. Что такое ускорение тела?
  5. Что такое перемещение? Что такое траектория?
  1. Основная часть. Изучение нового материала. (11 мин)
  1. Постановка проблемы:

Задание учащимся: Рассмотрим вращение юлы, вращение шарика на нити (демонстрация опыта). Как можно охарактеризовать их движения? Что общего в их движении?

Учитель: Значит, наша задача на сегодняшнем уроке ввести понятие прямолинейного и криволинейного движения. Движения тела по окружности.

(запись темы урока в тетрадях).

  1. Тема урока .

Слайд № 2.

Учитель: Для постановки целей я предлагаю проанализировать схему механического движения. (виды движения, научность)

Слайд № 3.

  1. Какие цели к нашей теме поставим?

Слайд № 4.

  1. Я предлагаю изучить эту тему по следующему плану . (Выделить основное)

Вы согласны?

Слайд № 5.

  1. Взгляните на рисунок. Рассмотрите примеры видов траекторий, встречающихся в природе и технике.

Слайд № 6.

  1. Действие на тело силы в одних случаях может привести только к изменению модуля вектора скорости этого тела, а в других – к изменению направления скорости. Покажем это на опытах.

(Проведение опытов с шариком на резинке)

Слайд № 7

  1. Сделайте вывод от чего зависит вид траектории движения.

(Ответ)

А теперь сравним данное определение с тем, которое дается в вашем учебнике на стр. 67

Слайд № 8.

  1. Рассмотрим рисунок. Как можно связать криволинейное движение с движением по окружности.

(Ответ)

То есть кривую линию можно переставить в виде совокупности дуг окружностей разных диаметров.

Сделаем вывод :…

(Записать в тетрадь)

Слайд № 9.

  1. Рассмотрим какие физические величины характеризуют движение по окружности.

Слайд № 10.

  1. Рассмотрим пример движения автомобиля. Что вылетает из под колес? Как она движется? Как направлены частицы? Чем защищаются от действия этих частиц?

(Ответ)

Сделаем вывод : …(о характере движения частиц)

Слайд № 11

  1. Давайте рассмотрим как направлена скорость при движении тела по окружности. (Анимация с лошадкой.)

Сделаем вывод : …(как направлена скорость.)

Слайд № 12.

  1. Выясним, как направлено ускорение при криволинейно движении, которое появляется здесь в связи с тем, что происходит изменение скорости по направлению.

(Анимация с мотоциклистом.)

Сделаем вывод : …(как направлено ускорение)

Запишем формулу в тетрадь.

Слайд № 13.

  1. Рассмотрите рисунок. Сейчас мы выясним почему ускорение направлено к центру окружности.

(объяснение учителя)

Слайд № 14.

Какие выводы можно сделать о направлении скорости и ускорения?

  1. Существуют и другие характеристики криволинейного движения. К ним относятся период и частота обращения тела по окружности. Скорость и период связаны соотношением, которую установим математически:

(Учитель пишет на доске, учащиеся делают запись в тетрадях)

Известно , а путь , то .

Так как , то

Слайд № 15.

  1. Какой же общий вывод моно сделать о характере движения по окружности?

(Ответ)

Слайд № 16. ,

  1. По II закону Ньютона ускорение всегда сонаправлено с силой, в результате действия которой оно возникает. Это справедливо и для центростремительного ускорения.

Давайте сделаем вывод : Как же направлена сила в каждой точке траектории?

(ответ)

Такая сила называется центростремительной.

Запишем формулу в тетрадь.

(Учитель пишет на доске, учащиеся делают запись в тетрадях)

Центростремительная сила создается всеми силами природы.

Приведите примеры действия центростремительных сил по их природе:

  • сила упругости (камень на веревке);
  • сила тяготения (планеты вокруг солнца);
  • сила трения (движение на поворотах).

Слайд № 17 .

  1. Для закрепления я предлагаю провести эксперимент. Для этого создадим три группы.

I группа установит зависимость скорости от радиуса окружности.

II группа измерит ускорение при движении по окружности.

III группа установит зависимость центростремительного ускорения от числа оборотов в единицу времени.

Слайд № 18.

Подведение итогов . Как зависит скорость и ускорение от радиуса окружности?

  1. Проведем тестирование для первичного закрепления. (7 мин)

Слайд № 19.

  1. Оцените свою работу на уроке. Продолжите предложения на листочках.

(Рефлексия. Отдельные ответы учащиеся озвучивают вслух.)

Слайд № 20.

  1. Домашнее задание: §18-19,

Упр. 18 (1, 2)

Дополнительно упр. 18 (5)

(Учитель комментирует)

Слайд № 21.