Уравнение движения тела по окружности. Равномерное движение тела по окружности. Неравномерно ускоренное движение тела по окружности

Вращательное движение вокруг неподвижной оси - еще один частный случай движения твердого тела.
Вращательным движением твердого тела вокруг неподвижной оси называется такое его движение, при котором все точки тела описывают окружности, центры которых находятся на одной прямой, называемой осью вращения, при этом плоскости, которым принадлежат эти окружности, перпендикулярны оси вращения (рис.2.4 ).

В технике такой вид движения встречается очень часто: например, вращение валов двигателей и генераторов, турбин и пропеллеров самолетов.
Угловая скорость . Каждая точка вращающегося вокруг оси тела, проходящей через точку О , движется по окружности, и различные точки проходят за время разные пути. Так, , поэтому модуль скорости точки А больше, чем у точки В (рис.2.5 ). Но радиусы окружностей поворачиваются за время на один и тот же угол . Угол - угол между осью ОХ и радиус-вектором , определяющим положение точки А (см. рис.2.5).

Пусть тело вращается равномерно, т. е. за любые равные промежутки времени поворачивается на одинаковые углы. Быстрота вращения тела зависит от угла поворота радиус-вектора, определяющего положение одной из точек твердого тела за данный промежуток времени; она характеризуется угловой скоростью . Например, если одно тело за каждую секунду поворачивается на угол , а другое - на угол , то мы говорим, что первое тело вращается быстрее второго в 2 раза.
Угловой скоростью тела при равномерном вращении называется величина, равная отношению угла поворота тела к промежутку времени , за который этот поворот произошел.
Будем обозначать угловую скорость греческой буквой ω (омега). Тогда по определению

Угловая скорость выражается в радианах в секунду (рад/с).
Например, угловая скорость вращения Земли вокруг оси равна 0,0000727 рад/с, а точильного диска - около 140 рад/с 1 .
Угловую скорость можно выразить через частоту вращения , т. е. число полных оборотов за 1с. Если тело совершает (греческая буква «ню») оборотов за 1с, то время одного оборота равно секунд. Это время называют периодом вращения и обозначают буквой T . Таким образом, связь между частотой и периодом вращения можно представить в виде:

Полному обороту тела соответствует угол . Поэтому согласно формуле (2.1)

Если при равномерном вращении угловая скорость известна и в начальный момент времени угол поворота , то угол поворота тела за время t согласно уравнению (2.1) равен:

Если , то , или .
Угловая скорость принимает положительные значения, если угол между радиус-вектором, определяющим положение одной из точек твердого тела, и осью ОХ увеличивается, и отрицательные, когда он уменьшается.
Тем самым мы можем описать положение точек вращающегося тела в любой момент времени.
Связь между линейной и угловой скоростями . Скорость точки, движущейся по окружности, часто называют линейной скоростью , чтобы подчеркнуть ее отличие от угловой скорости.
Мы уже отмечали, что при вращении твердого тела разные его точки имеют неодинаковые линейные скорости, но угловая скорость для всех точек одинакова.
Между линейной скоростью любой точки вращающегося тела и его угловой скоростью существует связь. Установим ее. Точка, лежащая на окружности радиусом R , за один оборот пройдет путь . Поскольку время одного оборота тела есть период T , то модуль линейной скорости точки можно найти так:

  • Основные законы Динамики. Законы Ньютона - первый, второй, третий. Принцип относительности Галилея. Закон всемирного тяготения. Сила тяжести. Силы упругости. Вес. Силы трения - покоя, скольжения, качения + трение в жидкостях и газах.
  • Кинематика. Основные понятия. Равномерное прямолинейное движение. Равноускоренное движение. Равномерное движение по окружности. Система отсчёта. Траектория, перемещение, путь, уравнение движения, скорость, ускорение, связь линейной и угловой скорости.
  • Простые механизмы. Рычаг (рычаг первого рода и рычаг второго рода). Блок (неподвижный блок и подвижный блок). Наклонная плоскость. Гидравлический пресс. Золотое правило механики
  • Законы сохранения в механике. Механическая работа, мощность, энергия, закон сохранения импульса, закон сохранения энергии, равновесие твердых тел
  • Вы сейчас здесь: Движение по окружности. Уравнение движения по окружности. Угловая скорость. Нормальное = центростремительное ускорение. Период, частота обращения (вращения). Связь линейной и угловой скорости
  • Механические колебания. Свободные и вынужденные колебания. Гармонические колебания. Упругие колебания. Математический маятник. Превращения энергии при гармонических колебаниях
  • Механические волны. Скорость и длина волны. Уравнение бегущей волны. Волновые явления (дифракция. интерференция...)
  • Гидромеханика и аэромеханика. Давление, гидростатическое давление. Закон Паскаля. Основное уравнение гидростатики. Сообщающиеся сосуды. Закон Архимеда. Условия плавания тел. Течение жидкости. Закон Бернулли. Формула Торричели
  • Молекулярная физика. Основные положения МКТ. Основные понятия и формулы. Свойства идеального газа. Основное уравнение МКТ. Температура. Уравнение состояния идеального газа. Уравнение Менделеева-Клайперона. Газовые законы - изотерма, изобара, изохора
  • Волновая оптика. Корпускулярно-волновая теория света. Волновые свойства света. Дисперсия света. Интерференция света. Принцип Гюйгенса-Френеля. Дифракция света. Поляризация света
  • Термодинамика. Внутренняя энергия. Работа. Количество теплоты. Тепловые явления. Первый закон термодинамики. Применение первого закона термодинамики к различным процессам. Уравнение теплового балланса. Второй закон термодинамики. Тепловые двигатели
  • Электростатика. Основные понятия. Электрический заряд. Закон сохранения электрического заряда. Закон Кулона. Принцип суперпозиции. Теория близкодействия. Потенциал электрического поля. Конденсатор.
  • Постоянный электрический ток. Закон Ома для участка цепи. Работа и мощность постоянного тока. Закон Джоуля-Ленца. Закон Ома для полной цепи. Закон электролиза Фарадея. Электрические цепи - последовательное и параллельное соединение. Правила Кирхгофа.
  • Электромагнитные колебания. Свободные и вынужденные электромагнитные колебания. Колебательный контур. Переменный электрический ток. Конденсатор в цепи переменного тока. Катушка индуктивности ("соленоид") в цепи переменного тока.
  • Элементы теории относительности. Постулаты теории относительности. Относительность одновременности, расстояний, промежутков времени. Релятивистский закон сложения скоростей. Зависимость массы от скорости. Основной закон релятивистский динамики...
  • Погрешности прямых и косвенных измерений. Абсолютная, относительная погрешность. Систематические и случайные погрешности. Среднее квадратическое отклонение (ошибка). Таблица определения погрешностей косвенных измерений различных функций.
  • На этом уроке мы рассмотрим криволинейное движение, а именно равномерное движение тела по окружности. Мы узнаем, что такое линейная скорость, центростремительное ускорение при движении тела по окружности. Также введем величины, которые характеризуют вращательное движение (период вращения, частота вращения, угловая скорость), и свяжем эти величины между собой.

    Под равномерным движением по окружности понимают, что тело за любой одинаковый промежуток времени поворачивается на одинаковый угол (см. Рис. 6).

    Рис. 6. Равномерное движение по окружности

    То есть модуль мгновенной скорости не меняется:

    Такую скорость называют линейной .

    Хотя модуль скорости не меняется, направление скорости изменяется непрерывно. Рассмотрим векторы скорости в точках A и B (см. Рис. 7). Они направлены в разные стороны, поэтому не равны. Если вычесть из скорости в точке B скорость в точке A , получаем вектор .

    Рис. 7. Векторы скорости

    Отношение изменения скорости () ко времени, за которое это изменение произошло (), является ускорением.

    Следовательно, любое криволинейное движение является ускоренным .

    Если рассмотреть треугольник скоростей, полученный на рисунке 7, то при очень близком расположении точек A и B друг к другу угол (α) между векторами скорости будет близок к нулю:

    Также известно, что этот треугольник равнобедренный, поэтому модули скоростей равны (равномерное движение):

    Следовательно, оба угла при основании этого треугольника неограниченно близки к :

    Это означает, что ускорение, которое направлено вдоль вектора , фактически перпендикулярно касательной. Известно, что линия в окружности, перпендикулярная касательной, является радиусом, поэтому ускорение направлено вдоль радиуса к центру окружности. Называется такое ускорение центростремительным.

    На рисунке 8 изображены рассмотренный ранее треугольник скоростей и равнобедренный треугольник (две стороны являются радиусами окружности). Эти треугольники являются подобными, так как у них равны углы, образованные взаимно перпендикулярными прямыми (радиус, как и вектор перпендикулярны к касательной).

    Рис. 8. Иллюстрация к выводу формулы центростремительного ускорения

    Отрезок AB является перемещением (). Мы рассматриваем равномерное движение по окружности, поэтому:

    Подставим полученное выражение для AB в формулу подобия треугольников:

    Понятий «линейная скорость», «ускорение», «координата» не достаточно для того, чтобы описать движение по кривой траектории. Поэтому необходимо ввести величины, характеризующие вращательное движение.

    1. Периодом вращения (T ) называется время одного полного оборота. Измеряется в системе СИ в секундах.

    Примеры периодов: Земля вращается вокруг своей оси за 24 часа (), а вокруг Солнца - за 1 год ().

    Формула для вычисления периода:

    где - полное время вращения; - число оборотов.

    2. Частота вращения (n ) - число оборотов, которое тело совершает в единицу времени. Измеряется в системе СИ в обратных секундах.

    Формула для нахождения частоты:

    где - полное время вращения; - число оборотов

    Частота и период - обратно пропорциональные величины:

    3. Угловой скоростью () называют отношение изменения угла, на который повернулось тело, ко времени, за которое этот поворот произошел. Измеряется в системе СИ в радианах, деленных на секунды.

    Формула для нахождения угловой скорости:

    где - изменение угла; - время, за которое произошел поворот на угол .

    4.1. Движение по окружности с постоянной скоростью.

    Движение по окружности - простейший вид криволинейного движения.

    4.1.1. Криволинейное движение - движение, траекторий которого является кривая линия.

    Для движения по окружности с постоянной скоростью:

    1) траектория движения - окружность;

    2) вектор скорости направлен по касательной к окружности;

    3) вектор скорости постоянно меняет свое направление;

    4) за изменение направления скорости отвечает ускорение, называемое центростремительным (или нормальным) ускорением;

    5) центростремительное ускорение меняет только направление вектора скорости, при этом модуль скорости остается неизменным;

    6) центростремительное ускорение направлено к центру окружности, по которой происходит движение (центростремительное ускорение всегда перпендикулярно вектору скорости).

    4.1.2. Период (T ) - время одного полного оборота по окружности.

    Это величина постоянная, так как длина окружности постоянная и скорость движения постоянна

    4.1.3 Частота - число полных оборотов за 1 с.

    По сути, частота отвечает на вопрос: как быстро вращается тело?

    4.1.4. Линейная скорость - показывает, какой путь проходит тело за 1 с (это та же самая скорость, о которой говорилось в предыдущих темах)

    где R - радиус окружности.

    4.1.5. Угловая скорость показывает, на какой угол поворачивается тело за 1 с.

    где - угол, на который повернулось тело за время

    4.1.6. Центростремительное ускорение

    Напомним, что центростремительное ускорение отвечает только за поворот вектора скорости. При этом, так как скорость постоянная величина, то значение ускорения тоже постоянно.

    4.1.7. Закон изменения угла поворота

    Это полный аналог закона движения при постоянной скорости:

    Роль координаты x играет угол роль начальной координаты играет скорость - угловая скорость И с формулой следует работать так же, как ранее работали с формулой закона равномерного движения.

    4.2. Движение по окружности с постоянным ускорением.

    4.2.1. Тангенциальное ускорение

    Центростремительное ускорение отвечает за изменение направления вектора скорости, но если еще меняется и модуль скорости, то необходимо ввести величину отвечающую за это - тангенциальное ускорение

    Из вида формулы ясно, что - это обычное ускорение, о котором говорилось раньше. Если то справедливы формулы равноускоренного движения:

    где S - путь, который проходит тело по окружности.

    Итак, еще раз подчеркнем, отвечает за изменение модуля скорости.

    4.2.2. Угловое ускорение

    Мы ввели аналог скорости для движения по окружности - угловая скорость. Естественно будет ввести и аналог ускорения - угловое ускорение

    Угловое ускорение связано с тангенциальным ускорением:

    Из формулы видно, что если тангенциальное ускорение постоянно, то и угловое ускорение будет постоянно. Тогда можем записать:

    Формула является полным аналогом закона равнопеременного движения, поэтому работать с этой формулой мы уже умеем.

    4.2.3. Полное ускорение

    Центростремительное (или нормальное) и тангенциальное ускорения не являются самостоятельными. На самом деле, это проекции полного ускорения на нормальную (направлена по радиусу окружности, то есть перпендикулярно скорости) и тангенциальную (направлена по касательной к окружности в сторону, куда направлен вектор скорости) оси. Поэтому

    Нормальная и тангенциальные оси всегда перпендикулярны, следовательно, абсолютно всегда модуль полного ускорения можно найти по формуле:

    4.4. Движение по криволинейной траектории.

    Движение по окружности является частным видом криволинейного движения. В общем случае, когда траектория представляет собой произвольную кривую (см. рис.), всю траекторию можно разбить на участки: AB и DE - прямолинейные участки, для которых справедливы все формулы движения по прямой; а для каждой участка, который нельзя рассмотреть как прямую, строим касательную окружность (окружность, которая касается траектории только в этой точке) - в точках C и D . Радиус касательной окружности называется радиусом кривизны. В каждой точке траектории радиус кривизны имеет свое значение.

    Формула для нахождения радиуса кривизны :

    где - нормальное ускорение в данной точке (проекция полного ускорения на ось, перпендикулярную вектору скорости).



    На этом уроке мы рассмотрим криволинейное движение, а именно равномерное движение тела по окружности. Мы узнаем, что такое линейная скорость, центростремительное ускорение при движении тела по окружности. Также введем величины, которые характеризуют вращательное движение (период вращения, частота вращения, угловая скорость), и свяжем эти величины между собой.

    Под равномерным движением по окружности понимают, что тело за любой одинаковый промежуток времени поворачивается на одинаковый угол (см. Рис. 6).

    Рис. 6. Равномерное движение по окружности

    То есть модуль мгновенной скорости не меняется:

    Такую скорость называют линейной .

    Хотя модуль скорости не меняется, направление скорости изменяется непрерывно. Рассмотрим векторы скорости в точках A и B (см. Рис. 7). Они направлены в разные стороны, поэтому не равны. Если вычесть из скорости в точке B скорость в точке A , получаем вектор .

    Рис. 7. Векторы скорости

    Отношение изменения скорости () ко времени, за которое это изменение произошло (), является ускорением.

    Следовательно, любое криволинейное движение является ускоренным .

    Если рассмотреть треугольник скоростей, полученный на рисунке 7, то при очень близком расположении точек A и B друг к другу угол (α) между векторами скорости будет близок к нулю:

    Также известно, что этот треугольник равнобедренный, поэтому модули скоростей равны (равномерное движение):

    Следовательно, оба угла при основании этого треугольника неограниченно близки к :

    Это означает, что ускорение, которое направлено вдоль вектора , фактически перпендикулярно касательной. Известно, что линия в окружности, перпендикулярная касательной, является радиусом, поэтому ускорение направлено вдоль радиуса к центру окружности. Называется такое ускорение центростремительным.

    На рисунке 8 изображены рассмотренный ранее треугольник скоростей и равнобедренный треугольник (две стороны являются радиусами окружности). Эти треугольники являются подобными, так как у них равны углы, образованные взаимно перпендикулярными прямыми (радиус, как и вектор перпендикулярны к касательной).

    Рис. 8. Иллюстрация к выводу формулы центростремительного ускорения

    Отрезок AB является перемещением (). Мы рассматриваем равномерное движение по окружности, поэтому:

    Подставим полученное выражение для AB в формулу подобия треугольников:

    Понятий «линейная скорость», «ускорение», «координата» не достаточно для того, чтобы описать движение по кривой траектории. Поэтому необходимо ввести величины, характеризующие вращательное движение.

    1. Периодом вращения (T ) называется время одного полного оборота. Измеряется в системе СИ в секундах.

    Примеры периодов: Земля вращается вокруг своей оси за 24 часа (), а вокруг Солнца - за 1 год ().

    Формула для вычисления периода:

    где - полное время вращения; - число оборотов.

    2. Частота вращения (n ) - число оборотов, которое тело совершает в единицу времени. Измеряется в системе СИ в обратных секундах.

    Формула для нахождения частоты:

    где - полное время вращения; - число оборотов

    Частота и период - обратно пропорциональные величины:

    3. Угловой скоростью () называют отношение изменения угла, на который повернулось тело, ко времени, за которое этот поворот произошел. Измеряется в системе СИ в радианах, деленных на секунды.

    Формула для нахождения угловой скорости:

    где - изменение угла; - время, за которое произошел поворот на угол .