Согласно статистическому определению вероятность события а равна. Классическое, статистическое и геометрическое определения вероятности. Алгебра событий. Операции над случайными событиями

Для практической деятельности необходимо уметь сравнивать события по степени возможности их наступления. Рассмотрим классический случай. В урне находится 10 шаров, 8 из них белого цвета, 2 черного. Очевидно, что событие «из урны будет извлечен шар белого цвета» и событие «из урны будет извлечен шар черного цвета» обладают разной степенью возможности их наступления. Поэтому для сравнения событий нужна определенная количественная мера.

Количественной мерой возможности наступления события является вероятность . Наиболее широкое распространение получили два определения вероятности события: классическое и статистическое.

Классическое определение вероятности связано с понятием благоприятствующего исхода. Остановимся на этом подробнее.

Пусть исходы некоторого испытания образуют полную группу событий и равновозможны, т.е. единственно возможны, несовместны и равновозможны. Такие исходы называют элементарными исходами , или случаями . При этом говорят, что испытание сводится к схеме случаев или «схеме урн », т.к. любую вероятностную задачу для подобного испытания можно заменить эквивалентной задачей с урнами и шарами разных цветов.

Исход называется благоприятствующим событию А , если появление этого случая влечет за собой появление события А .

Согласно классическому определению вероятность события А равна отношению числа исходов, благоприятствующих этому событию, к общему числу исходов , т.е.

, (1.1)

где Р(А) – вероятность события А ; m – число случаев благоприятствующих событию А ; n – общее число случаев.

Пример 1.1. При бросании игральной кости возможны шесть исходов – выпадение 1, 2, 3, 4, 5, 6 очков. Какова вероятность появления четного числа очков?

Решение. Все n = 6 исходов образуют полную группу событий и равновозможны, т.е. единственно возможны, несовместны и равновозможны. Событию А – «появление четного числа очков» – благоприятствуют 3 исхода (случая) – выпадение 2, 4 или 6 очков. По классической формуле вероятности события получаем

Р(А) = = .

Исходя из классического определения вероятности события, отметим ее свойства:

1. Вероятность любого события заключена между нулем и единицей, т.е.

0 ≤ Р (А ) ≤ 1.

2. Вероятность достоверного события равна единице.

3. Вероятность невозможного события равна нулю.

Как было сказано ранее, классическое определение вероятности применимо только для тех событий, которые могут появиться в результате испытаний, обладающих симметрией возможных исходов, т.е. сводящихся к схеме случаев. Однако существует большой класс событий, вероятности которых не могут быть вычислены с помощью классического определения.

Например, если допустить, что монета сплющена, то очевидно, что события «появление герба» и «появление решки» нельзя считать равновозможными. Поэтому формула для определения вероятности по классической схеме в данном случае неприменима.

Однако существует другой подход при оценке вероятности событий, основанный на том, насколько часто будет появляться данное событие в произведенных испытаниях. В этом случае используется статистическое определениевероятности.

Статистической вероятностью события А называется относительная частота (частость) появления этого события в n произведенных испытаниях, т.е.

, (1.2)

где Р * (А) – статистическая вероятность события А ; w(A) – относительная частота события А ; m – число испытаний, в которых появилось событие А ; n – общее число испытаний.

В отличие от математической вероятности Р(А) , рассматриваемой в классическом определении, статистическая вероятность Р * (А) является характеристикой опытной , экспериментальной . Иначе говоря, статистической вероятностью события А называется число, относительно которого стабилизируется (устанавливается) относительная частота w(А) при неограниченном увеличении числа испытаний, проводимых при одном и том же комплексе условий.

Например, когда про стрелка говорят, что он попадает в цель с вероятностью 0,95, то это означает, что из сотни выстрелов, произведенных им при определенных условиях (одна и та же цель на том же расстоянии, та же винтовка и т.д.), в среднем бывает примерно 95 удачных. Естественно, не в каждой сотне будет 95 удачных выстрелов, иногда их будет меньше, иногда больше, но в среднем при многократном повторении стрельбы в тех же условиях этот процент попаданий будет оставаться неизменным. Цифра 0,95, служащая показателем мастерства стрелка, обычно очень устойчива , т.е. процент попаданий в большинстве стрельб будет для данного стрелка почти один и тот же, лишь в редких случаях отклоняясь сколько-нибудь значительно от своего среднего значения.

Еще одним недостатком классического определения вероятности (1.1 ), ограничивающим его применение, является то, что оно предполагает конечное число возможных исходов испытания. В некоторых случаях этот недостаток можно преодолеть, используя геометрическое определение вероятности, т.е. находя вероятность попадания точки в некоторую область (отрезок, часть плоскости и т.п.).

Пусть плоская фигура g составляет часть плоской фигуры G (рис. 1.1). На фигуру G наудачу бросается точка. Это означает, что все точки области G «равноправны» в отношении попадания на нее брошенной случайной точки. Полагая, что вероятность события А – попадания брошенной точки на фигуру g – пропорциональна площади этой фигуры и не зависит ни от ее расположения относительно G , ни от формы g , найдем

Рис. 1.1 Рис 1.2

Пример 1.2. Два студента условились встретиться в определенном месте между 10 и 11 часами дня. Пришедший первым ждет второго в течение 15 минут, после чего уходит. Найти вероятность того, что встреча состоится, если каждый студент наудачу выбирает момент своего прихода между 10 и 11 часами.

Решение. Обозначим моменты прихода в определенное место первого и второго студентов соответственно через x и y . В прямоугольной системе координат Oxy возьмем за начало отсчета 10 часов, а за единицу измерения – 1 час. По условию 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Этим неравенствам удовлетворяют координаты любой точки, принадлежащей квадрату OKLM со стороной, равной 1 (рис. 1.2). Событие А – встреча двух студентов – произойдет, если разность между x и не y превзойдет 1/4 часа (по абсолютной величине), т.е. |y x | ≤ 0,25.

Решение этого неравенства есть полоса x – 0,25 ≤ y x + 0,25, которая внутри квадрата G представляет заштрихованную область g . По формуле (1.3)

Выше отмечено, что классическое определение вероятности применимо только для тех событий, которые могут появиться в результате испытаний, обладающих симметрией возможных исходов, т.е. сводящихся к схеме случаев. Однако существует большой класс событий, вероятности которых не могут быть вычислены с помощью классического определения.

В первую очередь это события, которые не являются равновозможными исходами испытания. Например, если монета сплющена, то, очевидно, события «появление герба» и «появление решки» при подбрасывании монеты нельзя считать равновозможными, и формула ( 1. 1) для расчета вероятности любого из них окажется неприменима.

Но есть и другой подход при оценке вероятности событий, основанный на том, насколько часто будет появляться данное событие в произведенных испытаниях.

Статистической вероятностью события А называется относительная частота (частость ) появления этого события в п произведенных испытаниях , т.е.

где Р(Л) - статистическая вероятность события A; w(A) - относительная частота (частость) события Ат - число испытаний, в которых появилось событие А;п - общее число испытаний.

В отличие от «математической» вероятности Р(А), рассматриваемой в классическом определении ( 1. 1), статистическая вероятность Р(Л) является характеристикой опытной , экспериментальной. Если Р(А) есть доля случаев, благоприятствующих событию Л, которая определяется непосредственно, без каких-либо испытаний, то PIA) есть доля тех фактически произведенных испытаний, в которых событие А появилось.

Согласно статистическому определению вероятность события есть предел 1 относительной частоты (частости) события при неограниченном увеличении числа испытаний , т.е.

Это означает, чтопри достаточно большом числе испытаний п можно считать, что

Статистическое определение вероятности, как и понятия и методы теории вероятностей в целом, применимы не к любым событиям с неопределенным исходом, которые в житейской практике считаются случайными, а только к тем из них, которые обладают определенными свойствам и .

1. Рассматриваемые события должны быть исходами только тех испытаний, которые могут быть воспроизведены неограниченное число раз при одном и том же комплексе условий. Так, например, бессмысленно ставить вопрос об определении вероятностей возникновения войн, появления гениальных произведений искусства и т.п., так как речь идет о неповторимых в одинаковых условиях испытаниях, уникальных событиях. Или, например, нс имеет смысла говорить о том, что данный студент сдаст семестровый экзамен по теории вероятностей, поскольку речь здесь идет о единичном испытании, повторить которое в тех же условиях нет возможности.

И хотя приведенные в примерах события с неопределенным исходом относятся к категории «может произойти, а может и не произойти», такими событиями теория вероятностей не занимается.

2. События должны обладать так называемой статистической устойчивостью , или устойчивостью относительных частот . Это означает, что в различных сериях испытаний относительная частота (частость) события изменяется незначительно (тем меньше, чем больше число испытаний), колеблясь около постоянного числа. Оказалось, что этим постоянным числом является вероятность события (об этом идет речь в теореме Бернулли, приведенной в гл. 6).

Факт приближения относительной частоты, или частости, события к его вероятности (1.1) при увеличении числа испытаний, сводящихся к схеме случаев, подтверждается многочисленными массовыми экспериментами, проводимыми разными лицами со времен возникновения теории вероятностей. Так, например, в опытах Бюффоиа (XVIII в.) относительная частота (частость) появления герба при 4040 подбрасываниях монеты оказалась равной 0,5069, в опытах Пирсона (XIX в.) при 23 000 подбрасываниях - 0,5005, практически не отличаясь от вероятности этого события, равной 0,5.

3. Число испытаний , в результате которых появляется событие Л, должно быть достаточно велико , ибо только в этом случае можно считать вероятность события Р(А) приближенно равной ее относительной частоте.

Резюмируя, можно сказать, что теория вероятностей изучает лишь такие события , в отношении которых имеет смысл не только утверждение об их случайности , но и возможна объективная оценка относительной частоты их появления. Так, утверждение, что при выполнении определенного комплекса условий? вероятность события равна р, означает не только случайность события Л, но и определенную , достаточно близкую к р , долю появлений события А при большом числе испытаний ; а значит, выражает определенную объективную (хотя и своеобразную) связь между комплексом условий 5* и событием А (не зависящую от субъективных суждений о наличии этой связи того или иного лица). И даже просто существование вероятности р (когда само значение р неизвестно) сохраняет качественно суть этого утверждения, выделенную курсивом.

Легко проверить, что свойства вероятности (см. (1.2)), вытекающие из классического определения ( 1. 1), сохраняются и при статистическом определении вероятности (1.3").

Наряду с классическим и статистическим определениями вероятности в приложениях математики иногда рассматривают так называемую субъективную вероятность как степень уверенности в наступлении того или иного события на основе обработки мнений экспертов. При таком подходе можно говорить о субъективной вероятности (а точнее, субъективной возможности) появления уникальных событий - результатов (исходов) неповторимых в одинаковых условиях испытаний. Субъективная вероятность может быть использована, например, при прогнозировании доходности активов, прибыли от инвестиций и т.и.

  • Понятие, т.е. сходимости, в теории вероятностей существенно отличается от классического, рассматриваемого в курсе математического анализа (подробнее об этом см. параграфы 6.3, 6.4).
  • В прикладной литературе выполнение приводимых ниже свойств событий с неопределенным исходом в исследуемой реальной действительности иногда называют условиямидействия статистического ансамбля.

Классическое определœение вероятности.

Различные определœения вероятности.

Алгебра событий.

Чтобы количественно сравнивать между собой события по степени их возможности, очевидно, нужно с каждым событием связать определённое число, ĸᴏᴛᴏᴩᴏᴇ тем больше, чем более возможно событие. Такое число мы назовём вероятностью события. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, вероятность события есть численная мера степени объективной возможности этого события.

Первым по времени определœением вероятности следует считать классическое, ĸᴏᴛᴏᴩᴏᴇ возникло из анализа азартных игр и применялось вначале интуитивно.

Классический способ определœения вероятности основан на понятии равновозможных и несовместных событий, которые являются исходами данного опыта и образуют полную группу несовместных событий.

Наиболее простым примером равновозможных и несовместных событий, образующих полную группу, является появление того или иного шара из урны, содержащей несколько одинаковых по размеру, весу и другим осязаемым признакам шаров, отличающихся лишь цветом, тщательно перемешанных перед выниманием.

По этой причине об испытании, исходы которого образуют полную группу несовместных и равновозможных событий, говорят, что оно сводится к схеме урн, или схеме случаев , или укладывается в классическую схему.

Равновозможные и несовместные события, составляющие полную группу, будем называть просто случаями или шансами. При этом в каждом опыте наряду со случаями могут происходить и более сложные события.

Пример : При подбрасывании игральной кости наряду со случаями А i - выпадение i- очков на верхней грани можно рассматривать такие события, как В - выпадение чётного числа очков, С - выпадение числа очков, кратных трём …

По отношению к каждому событию, ĸᴏᴛᴏᴩᴏᴇ может произойти при осуществлении эксперимента͵ случаи делятся на благоприятствующие , при которых это событие происходит, и неблагоприятствующие, при которых событие не происходит. В предыдущем примере, событию В благоприятствуют случаи А 2 , А 4 , А 6 ; событию С – случаи А 3 , А 6 .

Классической вероятностью появления некоторого события принято называть отношение числа случаев, благоприятствующих появлению этого события, к общему числу случаев равновозможных, несовместных, составляющих полную группу в данном опыте:

где Р(А) – вероятность появления события А; m - число случаев, благоприятствующих событию А; n - общее число случаев.

Примеры:

1) (смотри пример выше) Р(В) =, Р(С)= .

2) В урне находятся 9 красных и 6 синих шаров. Найти вероятность того, что вынутые наугад один, два шара окажутся красными.

А - вынутый наугад шар красный:

m =9, n =9+6=15, P(A) =

B - вынутые наугад два шара красные:

Из классического определœения вероятности вытекают следующие свойства (показать самостоятельно):

1) Вероятность невозможного события равна 0;

2) Вероятность достоверного события равна 1;

3) Вероятность любого события заключена между 0 и 1;

4) Вероятность события, противоположного событию А,

Классическое определœение вероятности предполагает, что число исходов испытания конечно. На практике же весьма часто встречаются испытания, число возможных случаев которых бесконечно. Вместе с тем, слабая сторона классического определœения состоит в том, что очень часто невозможно представить результат испытания в виде совокупности элементарных событий. Ещё труднее указать основания, позволяющие считать элементарные исходы испытания равновозможными. Обычно о равновозможности элементарных исходов испытания заключают из соображений симметрии. При этом такие задачи на практике встречаются весьма редко. По этим причинам наряду с классическим определœением вероятности пользуются и другими определœениями вероятности.

Статистической вероятностью события А принято называть относительная частота появления этого события в произведённых испытаниях:

где – вероятность появления события А;

– относительная частота появления события А;

Число испытаний, в которых появилось событие А;

Общее число испытаний.

В отличие от классической вероятности статистическая вероятность является характеристикой опытной, экспериментальной.

Пример: Для контроля качества изделий из партии наугад выбрано 100 изделий, среди которых 3 изделия оказались бракованными. Определить вероятность брака.

Статистический способ определœения вероятности применим лишь к тем событиям, которые обладают следующими свойствами:

· Рассматриваемые события должны быть исходами только тех испытаний, которые бывают воспроизведены неограниченное число раз при одном и том же комплексе условий.

· События должны обладать статистической устойчивостью (или устойчи- востью относительных частот). Это означает, что в различных сериях испытаний относительная частота события изменяется незначительно.

· Число испытаний, в результате которых появляется событие А, должно быть достаточно велико.

Легко проверить, что свойства вероятности, вытекающие из классического определœения, сохраняются и при статистическом определœении вероятности.

Понятие и виды. Классификация и особенности категории "Статистическое определение вероятности." 2017, 2018.

  • - Статистическое определение вероятности.

    Пусть произведено N испытаний, при этом событие A наступило ровно M раз. Отношение называется относительной частотой события A и обозначается. За вероятность события A принимается число, около которого группируются наблюдаемые значения относительной частоты: . ... .


  • - Статистическое определение вероятности.

    Относительная частота. Пусть A есть случайное событие, которое может наступить в данном опыте. Напомним, что мы рассматриваем опыты, удовлетворяющие условиям а),б) пункта 2. Предположим, что после повторения опыта N раз, событие A произошло M раз. Определение... .




  • - Статистическое определение вероятности

    Существует большой класс событий, вероятности которых не могут быть вычислены с помощью классического определения. В первую очередь это события с неравновозможными исходами (например, игральная кость «нечестная», монета сплющена и т.д.). В таких случаях может помочь... [читать подробнее] .


  • - Относительная частота. Статистическое определение вероятности.

    Классическое определение вероятности. Предмет теории вероятностей. Случайные события. Алгебра событий. Относитель-ная частота и вероятность случайного события. Полная группа событий. Классичес-кое определение вероятности. Основные свойства вероятности.... .


  • Показатель ранговой корреляции Кендалла, проверка соответствующей гипотезы о существенности связи.

    2.Классическое определение вероятности. Свойства вероятности.
    Вероятность - одно из основных понятий теории вероятностей. Существует несколько определений этого понятия. Приведем определение, которое называют классическим. Далее укажем слабые стороны этого определения и приведем другие определения, позволяющие преодолеть недостатки классического определения.

    Рассмотрим пример. Пусть в урне содержится 6 одинаковых, тщательно перемешанных шаров, причем 2 из них - красные, 3 - синие и 1 - белый. Очевидно, возможность вынуть наудачу из урны цветной (т. е. красный или синий) шар больше, чем возможность извлечь белый шар. Можно ли охарактеризовать эту возможность числом? Оказывается, можно. Это число и называют вероятностью события (появления цветного шара). Таким образом, вероятность есть число, характеризующее степень возможности появления события.

    Поставим перед собой задачу дать количественную оценку возможности того, что взятый наудачу шар цветной. Появление цветного шара будем рассматривать в качестве события А. Каждый из возможных результатов испытания (испытание состоит в извлечении шара из урны) назовемэлементарным исходом (элементарным событием) . Элементарные исходы обозначим через w 1 , w 2 , w 3 и т.д. В нашем примере возможны следующие 6 элементарных исходов: w 1 - появился белый шар; w 2 , w 3 - появился красный шар; w 4 , w 5 , w 6 - появился синий шар. Легко видеть, что эти исходы образуют полную группу попарно несовместных событий (обязательно появится только один шар) и они равновозможны (шар вынимают наудачу, шары одинаковы и тщательно перемешаны).

    Те элементарные исходы, в которых интересующее нас событие наступает, назовем благоприятствующими этому событию. В нашем примере благоприятствуют событию A (появлению цветного шара) следующие 5 исходов: w 2 , w 3 , w 4 , w 5 , w 6 .

    Таким образом, событие А наблюдается, если в испытании наступает один, безразлично какой, из элементарных исходов, благоприятствующих A; в нашем примере А наблюдается, если наступит w 2 , или w 3 , или w 4 , или w 5 , или w 6 . В этом смысле событие А подразделяется на несколько элементарных событий (w 2 , w 3 , w 4 , w 5 , w 6); элементарное же событие не подразделяется на другие события. В этом состоит различие между событием А и элементарным событием (элементарным исходом).

    Отношение числа благоприятствующих событию А элементарных исходов к их общему числу называют вероятностью события А и обозначают через Р (А). В рассматриваемом примере всего элементарных исходов 6; из них 5 благоприятствуют событию А. Следовательно, вероятность того, что взятый шар окажется цветным, равна Р (A) = 5 / 6. Это число и дает ту количественную оценку степени возможности появления цветного шара, которую мы хотели найти. Дадим теперь определение вероятности.



    Вероятностью события А называют отношение числа благоприятствующих этому событию исходов к общему числу всех равновозможных несовместных элементарных исходов, образующих полную группу. Итак, вероятность события А определяется формулой

    где m - число элементарных исходов, благоприятствующих A; n - число всех возможных элементарных исходов испытания.

    Здесь предполагается, что элементарные исходы несовместны, равновозможны и образуют полную группу. Из определения вероятности вытекают следующие ее свойства:

    С в о й с т в о 1. Вероятность достоверного события равна единице.

    Действительно, если событие достоверно, то каждый элементарный исход испытания благоприятствует событию. В этом случае m = n, следовательно,

    Р (A) = m / n = n / n = 1.

    С в о й с т в о 2. Вероятность невозможного события равна нулю.

    Действительно, если событие невозможно, то ни один из элементарных исходов испытания не благоприятствует событию. В этом случае m = 0, следовательно,

    Р (А) = m / n = 0 / n = 0.

    С в о й с т в о 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей .

    Действительно, случайному событию благоприятствует лишь часть из общего числа элементарных исходов испытания. В этом случае 0 < m < n, значит, 0 < m / n < 1, следовательно,

    0 < Р (А) < 1

    Итак, вероятность любого события удовлетворяет двойному неравенству

    З а м е ч а н и е. Современные строгие курсы теории вероятностей построены на теоретико-множественной основе. Ограничимся изложением на языке теории множеств тех понятий, которые рассмотрены выше.

    Пусть в результате испытания наступает одно и только одно из событий w i , (i = 1, 2, ..., n). События w i , называют элементарными событиями (элементарными исходами) . Уже отсюда следует, что элементарные события попарно несовместны. Множество всех элементарных событий, которые могут появиться в испытании, называютпространством элементарных событий W, а сами элементарные события - точками пространства W.

    Событие А отождествляют с подмножеством (пространства W), элементы которого есть элементарные исходы, благоприятствующие А; событие В есть подмножество W, элементы которого есть исходы, благоприятствующие В, и т.д. Таким образом, множество всех событий, которые могут наступить в испытании, есть множество всех подмножествW. Само W наступает при любом исходе испытания, поэтому W - достоверное событие; пустое подмножество пространства W - невозможное событие (оно не наступает ни при каком исходе испытания).

    Заметим, что элементарные события выделяются из числа всех событий тем, что каждое из них содержит только один элемент W.

    Каждому элементарному исходу w i , ставят в соответствие положительное число p i - вероятность этого исхода, причем

    По определению, вероятность Р(А) события А равна сумме вероятностей элементарных исходов, благоприятствующих А. Отсюда легко получить, что вероятность события достоверного равна единице, невозможного - нулю, произвольного - заключена между нулем и единицей.

    Рассмотрим важный частный случай, когда все исходы равновозможны. Число исходов равно n, сумма вероятностей всех исходов равна единице; следовательно, вероятность каждого исхода равна 1 / n. Пусть событию А благоприятствует m исходов. Вероятность события А равна сумме вероятностей исходов, благоприятствующих А:

    Р (А) = 1 / n + 1 / n + .. + 1 / n.

    Учитывая, что число слагаемых равно m, имеем

    Р (А) = m / n.

    Получено классическое определение вероятности.

    Построение логически полноценной теории вероятностей основано на аксиоматическом определении случайного события и его вероятности. В системе аксиом, предложенной А. Н. Колмогоровым, неопре-деляемыми понятиями являются элементарное событие и вероятность. Приведем аксиомы, определяющие вероятность:

    1. Каждому событию А поставлено в соответствие неотрицательное действительное число Р (А). Это число называется вероятностью события А.

    2. Вероятность достоверного события равна единице:

    3. Вероятность наступления хотя бы одного из попарно несовместных событий равна сумме вероятностей этих событий.

    Исходя из этих аксиом, свойства вероятностей и зависимости между ними выводят в качестве теорем.

    3.Статическое определение вероятности, относительная частота.

    Классическое определение не требует проведения опыта. В то время как реальные прикладные задачи имеют бесконечное число исходов, и классическое определение в этом случае не может дать ответа. Поэтому в таких задачах будем использовать статическое определение вероятностей , которое подсчитывают после проведения эксперимента или опыта.

    Статической вероятностью w(A) или относительной частотой называют отношение числа благоприятных данному событию исходов к общему числу фактически проведенных испытаний.

    w (A )=nm

    Относительная частота события обладает свойством устойчивости :

    limn →∞P (∣ ∣ nm p ∣ ∣ <ε)=1 (свойство устойчивости относительной частоты)

    4.Геометрические вероятности.

    При геометрическом подходе к определению вероятности в качестве пространства элементарных событий рассматривается произвольное множество конечной лебеговой меры на прямой, плоскости или пространстве. Событиями называются всевозможные измеримые подмножества множества .

    Вероятность события А определяется формулой

    где обозначает лебегову меру множества А. При таком определении событий и вероятностей все аксиомы А.Н.Колмогорова выполняются.

    В конкретных задачах, которые сводятся к указанной выше вероятностной схеме, испытание интерпретируется как случайный выбор точки в некоторой области , а событие А – как попадание выбранной точки в некоторую подобласть А области . При этом требуется, чтобы все точки области имели одинаковую возможность быть выбранными. Это требование обычно выражается словами «наудачу», «случайным образом» и т.д.

    Для практической деятельности необходимо уметь сравнивать события по степени возможности их наступления. Рассмотрим классический случай. В урне находится 10 шаров, 8 из них белого цвета, 2 черного. Очевидно, что событие «из урны будет извлечен шар белого цвета» и событие «из урны будет извлечен шар черного цвета» обладают разной степенью возможности их наступления. Поэтому для сравнения событий нужна определенная количественная мера.

    Количественной мерой возможности наступления события является вероятность . Наиболее широкое распространение получили два определения вероятности события: классическое и статистическое.

    Классическое определение вероятности связано с понятием благоприятствующего исхода. Остановимся на этом подробнее.

    Пусть исходы некоторого испытания образуют полную группу событий и равновозможны, т.е. единственно возможны, несовместны и равновозможны. Такие исходы называют элементарными исходами , или случаями . При этом говорят, что испытание сводится к схеме случаев или «схеме урн », т.к. любую вероятностную задачу для подобного испытания можно заменить эквивалентной задачей с урнами и шарами разных цветов.

    Исход называется благоприятствующим событию А , если появление этого случая влечет за собой появление события А .

    Согласно классическому определению вероятность события А равна отношению числа исходов, благоприятствующих этому событию, к общему числу исходов , т.е.

    , (1.1)

    где Р(А) – вероятность события А ; m – число случаев благоприятствующих событию А ; n – общее число случаев.

    Пример 1.1. При бросании игральной кости возможны шесть исходов – выпадение 1, 2, 3, 4, 5, 6 очков. Какова вероятность появления четного числа очков?

    Решение. Все n = 6 исходов образуют полную группу событий и равновозможны, т.е. единственно возможны, несовместны и равновозможны. Событию А – «появление четного числа очков» – благоприятствуют 3 исхода (случая) – выпадение 2, 4 или 6 очков. По классической формуле вероятности события получаем

    Р(А) = = .

    Исходя из классического определения вероятности события, отметим ее свойства:

    1. Вероятность любого события заключена между нулем и единицей, т.е.

    0 ≤ Р (А ) ≤ 1.

    2. Вероятность достоверного события равна единице.

    3. Вероятность невозможного события равна нулю.

    Как было сказано ранее, классическое определение вероятности применимо только для тех событий, которые могут появиться в результате испытаний, обладающих симметрией возможных исходов, т.е. сводящихся к схеме случаев. Однако существует большой класс событий, вероятности которых не могут быть вычислены с помощью классического определения.

    Например, если допустить, что монета сплющена, то очевидно, что события «появление герба» и «появление решки» нельзя считать равновозможными. Поэтому формула для определения вероятности по классической схеме в данном случае неприменима.

    Однако существует другой подход при оценке вероятности событий, основанный на том, насколько часто будет появляться данное событие в произведенных испытаниях. В этом случае используется статистическое определениевероятности.

    Статистической вероятностью события А называется относительная частота (частость) появления этого события в n произведенных испытаниях, т.е.

    , (1.2)

    где Р * (А) – статистическая вероятность события А ; w(A) – относительная частота события А ; m – число испытаний, в которых появилось событие А ; n – общее число испытаний.

    В отличие от математической вероятности Р(А) , рассматриваемой в классическом определении, статистическая вероятность Р * (А) является характеристикой опытной , экспериментальной . Иначе говоря, статистической вероятностью события А называется число, относительно которого стабилизируется (устанавливается) относительная частота w(А) при неограниченном увеличении числа испытаний, проводимых при одном и том же комплексе условий.

    Например, когда про стрелка говорят, что он попадает в цель с вероятностью 0,95, то это означает, что из сотни выстрелов, произведенных им при определенных условиях (одна и та же цель на том же расстоянии, та же винтовка и т.д.), в среднем бывает примерно 95 удачных. Естественно, не в каждой сотне будет 95 удачных выстрелов, иногда их будет меньше, иногда больше, но в среднем при многократном повторении стрельбы в тех же условиях этот процент попаданий будет оставаться неизменным. Цифра 0,95, служащая показателем мастерства стрелка, обычно очень устойчива , т.е. процент попаданий в большинстве стрельб будет для данного стрелка почти один и тот же, лишь в редких случаях отклоняясь сколько-нибудь значительно от своего среднего значения.

    Еще одним недостатком классического определения вероятности (1.1 ), ограничивающим его применение, является то, что оно предполагает конечное число возможных исходов испытания. В некоторых случаях этот недостаток можно преодолеть, используя геометрическое определение вероятности, т.е. находя вероятность попадания точки в некоторую область (отрезок, часть плоскости и т.п.).

    Пусть плоская фигура g составляет часть плоской фигуры G (рис. 1.1). На фигуру G наудачу бросается точка. Это означает, что все точки области G «равноправны» в отношении попадания на нее брошенной случайной точки. Полагая, что вероятность события А – попадания брошенной точки на фигуру g – пропорциональна площади этой фигуры и не зависит ни от ее расположения относительно G , ни от формы g , найдем