Физические и химические свойства бензола. Реакционная способность гомологов бензола Где используется бензол

Таким соединением, как бензол, госпожа Химия в своем хозяйстве окончательно и бесповоротно обзавелась только в 1833 году. Бензол - это соединение, которое имеет вспыльчивый, можно сказать, даже взрывной характер. Как это выяснили?

История

Иоган Глаубер в 1649 году обратил свое внимание на соединение, которое благополучно образовалось, когда химик занимался обработкой каменноугольной смолы. Но оно пожелало остаться инкогнито.

Спустя около 170 лет, а если быть гораздо более точным, в середине двадцатых годов XIX века, по воле случая из светильного газа, а именно из выделившегося конденсата, извлекли бензол. Таким стараниям человечество обязано Майклу Фарадею, ученому из Англии.

Эстафету по приобретению бензола перехватил немец Эйльгард Мичерлих. Это случилось, когда проходил процесс обработки безводных солей кальция бензойной кислоты. Возможно, поэтому соединению дали такое наименование - бензол. Еще, как вариант, ученый называл его бензином. Благовоние, если в переводе с арабского.

Бензол красиво и ярко горит, в связи с этими наблюдениями Огюст Лоран посоветовал назвать его «фен» или «бензен». Яркий, блистающий - если перевести с греческого языка.

Опираясь на мнение понятие о природе электронной связи, о качествах бензола, ученый предоставил молекулу соединения в виде следующего образа. Это шестиугольник. В него вписана окружность. Вышесказанное говорит о том, что у бензола целостное электронное облако, которое благополучно заключает шесть (без исключения) атомов углерода цикла. Скрепленных бинарных связей не наблюдается.

С бензолом раньше работали как с растворителем. А в основном, как говорится, не состоял, не участвовал, не привлекался. Но это в XIX веке. В XX произошли существенные перемены. Свойства бензола выражают ценнейшие качества, которые помогли ему стать более популярным. Октановое число, которое оказалось высоким, предоставило возможность применять его в качестве элемента топлива для заправки автомобилей. Сие действо послужило толчком обширного изъятия бензола, добыча оного осуществляется как вторичный продукт коксования изготовления стали.

К сороковым годам в химической сфере бензол начал потребляться в изготовлении веществ, которые быстро взрываются. XX век увенчал себя тем, что нефтеперерабатывающая промышленность выработала бензола столько, что стала снабжать химическую индустрию.

Характеристика бензола

Ненасыщенные углеводороды очень схожи с бензолом. Например, углеводородный ряд этилена характеризует себя как ненасыщенный углеводород. Ему свойственна реакция присоединения. Бензол охотно вступает в Все это благодаря атомам, которые находятся в одной плоскости. И как факт - сопряженное электронное облако.

Если в формуле присутствует бензольное кольцо, значит, можно прийти к элементарному выводу, что это - бензол, структурная формула которого выглядит именно так.

Физические свойства

Бензол - это жидкость которая не имеет цвета, зато имеет достойный сожаления запах. Плавится бензол, когда температура достигает 5,52 градусов по Цельсию. Кипит при 80,1. Плотность составляет 0,879 г/см 3 , масса молярная равна 78,11 г/моль. При горении сильно коптит. Формирует взрывоопасные соединения, когда проникает воздух. породы (бензин, эфир и прочие) с описываемым веществом соединяются без проблем. Азеотропное соединение создает с водой. Нагрев до начала парообразования происходит при 69,25 градусов (91 % бензола). При 25 градусах по Цельсию может растворяться в воде 1,79 г/л.

Химические свойства

Бензол реагирует с серной и азотной кислотой. А также с алкенами, галогенами, хлоралканами. Реакция замещения - вот что ему свойственно. Температура давления влияет на прорыв кольца бензола, которое проходит в достаточно резких условиях.

Каждое уравнение реакции бензола мы можем рассмотреть более детально.

1. Электрофильное замещение. Бром, при наличии катализатора, взаимодействует с хлором. В результате получаем хлоробензол:

С6H6+3Cl2 → C6H5Cl + HCl

2. Реакция Фриделя-Крафтса, или алкилирование бензола. Появление алкилбензолов происходит благодаря соединению с алканами, которые являются галогенопроизводными:

C6H6 + C2H5Br → C6H5C2H5 + HBr

3. Электрофильное замещение. Здесь идет реакция нитрования и сульфирования. Выглядеть уравнение бензола будет следующим образом:

C6H6 + H2SO4 → C6H5SO3H + H2O

C6H6 + HNO3 → C6H5NO2 + H2O

4. Бензол при горении:

2C6H6 + 15O2 → 12CO2 + 6H2O

При определенных условиях проявляет характер, свойственный насыщенным углеводородам. П-электронное облако, которое находится в строении рассматриваемого вещества, объясняет эти реакции.

От спецтехнологии зависят различные виды бензола. Отсюда происходит маркировка нефтяного бензола. Например, очищенный и высшей очистки, для синтеза. Хотелось бы отдельно отметить гомологи бензола, а если конкретнее - их химические свойства. Это алкилбензолы.

Гомологи бензола гораздо охотнее реагируют. Но вышесказанные реакции бензола, а именно гомологов, проходят с некоторым отличием.

Галогенирование алкилбензолов

Вид уравнения следующий:

С6H5-CH3 + Br = C6H5-CH2Br + HBr.

Стремление брома в кольцо бензола не наблюдается. Он выходит в цепочку сбоку. Зато благодаря катализатору соли Al(+3) бром смело идет в кольцо.

Нитрование алкилбензолов

Благодаря серной и азотной кислотам нитрируются бензолы и алкилбензолы. Реакционноспособные алкилбензолы. Получаются два продукта из представленных трех - это пара- и орто-изомеры. Можно записать одну из формул:

C6H5 - CH3 + 3HNO3 → C6H2CH3 (NO2)3.

Окисление

Для бензола это неприемлемо. Зато алкилбензолы реагируют охотно. Например, бензойная кислота. Формула приведена ниже:

C6H5CH3 + [O] → C6H5COOH.

Алкилбензол и бензол, их гидрирование

В присутствии усилителя водород начинает реагировать с бензолом, вследствие чего образуется циклогексан, как об этом говорилось выше. Подобным образом алкибензолы без проблем преобразуются в алкилциклогексаны. Для получения алкилциклогексана требуется подвергнуть гидрированию нужный алкилбензол. В основном это необходимая процедура для производства беспримесного продукта. И это далеко не все реакции бензола и алкилбензола.

Производство бензола. Промышленность

Фундамент такого производства зиждется на том, чтобы переработать составляющие: толуола, нафты, смолы, которая выделяется при крекинге угля, и прочих. Посему бензол производится на нефтехимических, металлургических предприятиях. Важно знать, как получить бензол разной степени очистки, ведь от принципа изготовления и предназначения следует прямая зависимость марки данного вещества.

Львиную долю изготавливают термокаталитическим реформингом каустобиолитной части, выкипающей при 65 градусах, обладающей эффектом экстракта, дистилляции с диметилформамидом.

При выработке этилена и пропилена получают жидкие продукты, которые образуются в ходе распада неорганических и органических соединений под воздействием тепла. Из них и выделяют бензол. Но, к сожалению, исходного материала для этого варианта добычи бензола не так уж и много. Потому интересующее нас вещество добывают риформингом. Посредством такого способа объем бензола увеличивается.

Путем деалкилирования при температуре 610-830 градусов со знаком плюс, при наличии пара, образующегося при кипении воды и водорода, из толуола получают бензол. Есть еще вариант - каталитический. Когда наблюдается наличие цеолитов, или, как вариант, катализаторов оксидных, при соблюдении температурного режима 227-627 градусов.

Существует еще один, более старый, способ разработки бензола. С помощью абсорбции поглотителями органического происхождения его выделяют из конечного результата коксования каменного угля. Продукт парогазовый и заранее подвергся охлаждению. Например, в ход пускается масло, источником которого является нефть или каменный уголь. Когда перегонка осуществляется с водяным паром, поглотитель отделяется. Гидроочистка помогает сырой бензол освободить от лишних веществ.

Каменноугольное сырье

В металлургии при использовании каменного угля, а если уточнить - его сухой перегонки, получают кокс. Во время этой процедуры ограничивается поступление воздуха. Не стоит забывать и то, что до температуры 1200-1500 по Цельсию нагревается уголь.

Углехимический бензол нуждается в доскональном очищении. Нужно избавиться в обязательном порядке от метила циклогексана и его товарища н-гептана. тоже должны быть изъяты. Бензолу предстоит процесс разделения, очищения, который будет осуществляться не один раз.

Метод, описанный выше, самый старый, но по истечении времени он теряет свои высокие позиции.

Нефтяные фракции

0,3-1,2 % - такие показатели состава нашего героя в необработанной нефти. Мизерные показатели, чтобы вкладывать финансы и силы. Лучше всего задействовать промышленную процедуру по переработке нефтяных фракций. То есть каталитический риформинг. При наличии алюмо-платино-рениевого усилителя растет процент вмещения ароматических углеводов, и возрастает показатель, определяющий возможности топлива не самовозгораться при его сжатии.

Смолы пиролиза

Если добывать наш нефтепродукт из не твердого сырья, а именно путем пиролиза возникающих при изготовлении пропилена и этилена, то сей подход окажется наиболее приемлемым. Если быть точным, бензол выделяется из пироконденсата. Разложение определенных долей нуждается в гидроочистке. При очистке отстраняются сернистые и непредельные смеси. В исходном результате замечено содержание ксилола, толуола, бензола. С помощью перегона, который является экстактивным, БТК-группа разделяется и получается бензол.

Гидродеалкилирование толуола

Главные герои процесса, коктейль из водородного потока и толуола, подаются нагретыми в реактор. Толуол проходит через пласт катализатора. Во время этого процесса метильная группа отделяется с формированием бензола. Здесь уместен определенный способ очищения. Результатом становится высокочистое вещество (для нитрования).

Диспропорционирование толуола

В следствии отторжения метильного класса совершается созидание до бензола, окисляется ксилол. В данном процессе было замечено переалкилирование. Действие катализации происходит благодаря палладию, платине и неодиму, которые находятся на оксиде алюминия.

В реактор со стойким пластом катализатора подается талуол и водород. Его цель - удержать оседание на плоскость катализатора углеводородов. Поток, который выходит из реактора, подвергается охлаждению, а на рецикл благополучно извлекается водород. То, что осталось, перегоняется трижды. На начальной стадии изымаются соединения, которые являются неароматическими. Вторым добывается бензол, и последний шаг - это выделение ксилолов.

Ацетилена тримеризация

Благодаря трудам французского физико-химика Марселена Бертло из ацетилена стали изготавливать бензол. Но при этом выделялся тяжелый коктейль из многих других элементов. Стоял вопрос, как понизить температуру реакции. Ответ был получен лишь в конце сороковых годов XX века. В. Реппе нашёл соответствующий катализатор, им оказался никель. Тримеризация - это единственный вариант обрести из ацетилена бензол.

Образование бензола происходит с помощью активированного угля. При больших показателях теплоты над углем проходит ацетилен. Бензол выделяется, если температура составляет не менее 410 градусов. При этом еще рождаются разнообразные ароматические углеводороды. Поэтому необходима хорошая аппаратура, которая способна качественно очистить ацетилен. При таком трудоемком способе, как тримеризация, ацетилена расходуется очень много. Чтобы получить 15 мл бензола, берется 20 литров ацетилена. Можно просмотреть, как это выглядит в реакция не заставит себя долго ждать.

3C2H2 → C6H6 (уравнение Зелинского).

3CH → CH = (t, kat) = C6H6.

Где используется бензол

Бензол — это достаточно популярное детище химии. Особенно часто было замечено, как бензол принимали на вооружение в изготовлении кумола, циклогексана, этилбензола. Для создания стирола без этилбензола не обойтись. Исходным материалом для того, чтобы выработать капролактам, служит циклогексан. Изготавливая термопластичную смолу, применяют именно капролактам. Описываемое вещество незаменимо при изготовлении разных красок, лаков.

Насколько опасен бензол

Бензол - это токсичное вещество. Проявление ощущения недомогания, которое сопровождается тошнотой и сильным головокружением - это признак отравления. Не исключается даже летальный исход. Чувство неописуемого восторга - это не менее тревожные звоночки при отравлении бензолом.

Бензол в жидком состоянии вызывает раздражение кожи. Бензольные пары с легкостью проникают даже через неповрежденный кожный покров. При самых недолгосрочных контактах с веществом в небольшой дозе, но на регулярной основе, неприятные последствия не заставят себя долго ждать. Это может быть поражение костного мозга и лейкозы острого характера разного вида.

Ко всему прочему, вещество вызывает зависимость у человека. Бензол действует как дурман. Из табачного дыма получается дегтеобразный продукт. Кода его изучили, то пришли к выводу, что содержание последнего небезопасно для человека. Обнаружилось помимо присутствия никотина еще и наличие ароматических углеводов вида бензпирена. Отличительной чертой бензпирена являются канцерогенные вещества. Действие они оказывают очень вредное. Например, вызывают онкологические заболевания.

Несмотря на вышесказанное, бензол является стартовым сырьем для производства разнообразных лекарственных препаратов, пластмасс, резины синтетического происхождения и, конечно же, красителей. Это самое распространённое детище химии и ароматическое соединение.

Циклическую структуру бензола впервые предложил Ф.А. Кекуле в 1865 г.

Фридрих Август Кекуле фон Страдониц - выдающийся немецкий химик XIX в. В 1854 г. он обнаружил первое органическое соединение, содержащее серу - тиоуксусную кислоту (тиоэтановую кислоту). Кроме того, он установил структуру диазосоединений. Олнако его наиболее известным вкладом в развитие химии является установление структуры бензола (1866). Кекуле показал, что двойные связи бензола чередуются по кольцу (эта идея впервые возникла у него во сне). Позже он показал, что два возможных расположения двойных связей идентичны и что бензольное кольцо представляет собой гибрид между этими двумя структурами. Таким образом, он предвосхитил представление о резонансе (мезомерии), которое появилось в теории химической связи в начале 1930-х гг.

Если бы бензол действительно имел такую структуру, то его 1,2-дизамещенные производные должны были иметь по два изомера. Например,

Однако ни у одного из 1,2-дизамещенных бензолов не удается выделить два изомера.

Поэтому впоследствии Кекуле предположил, что молекула бензола существует как две быстро переходящие друг в друга структуры:

Заметим, что в таких схематических изображениях молекул бензола и их производных обычно не указываются атомы водорода, присоединенные к углеродным атомам бензольного кольца.

В современной химии молекулу бензола рассматривают как резонансный гибрид из этих двух предельных резонансных форм (см. разд. 2.1). Другое описание молекулы бензола основано на рассмотрении ее молекулярных орбиталей. В разд. 3.1 было указано, что -электроны, находящиеся на -связывающих орбиталях, делокализованы между всеми атомами углерода бензольного кольца и образуют -электронное облако. В соответствии с таким представлением молекулу бензола можно условно изобразить следующим образом:

Экспериментальные данные подтверждают наличие у бензола именно такой структуры. Если бы бензол имел структуру, которую предположил первоначально Кекуле, с тремя сопряженными двойными связями, то бензол должен был вступать в реакции присоединения подобно алкенам. Однако, как было уже указано выше, бензол не вступает в реакции присоединения. Кроме того, бензол обладает большей устойчивостью, чем если бы он имел три изолированные двойные связи. В разд. 5.3 было указано, что энтальпия гидрирования бензола с образованием циклогексана имеет большее отрицательное

Таблица 18.3. Длина различных углерод-углеродных связей

Рис. 18.6. Геометрическое строение молекулы бензола.

значение, чем утроенная энтальпия гидрирования циклогексена. Разность этих величин принято называть энтальпией делокализации, резонансной энергией или энергией стабилизации бензола.

Все углерод-углеродные связи в бензольном кольце имеют одинаковую длину, которая меньше, чем длина связей С-С в алканах, но больше, чем длина связей С=С в алкенах (табл. 18.3). Это служит подтверждением тому, что углерод-углеродные связи в бензоле представляют собой гибрид между простыми и двойными связями.

Молекула бензола имеет плоскую структуру, которая изображена на рис. 18.6.

Физические свойства

Бензол при нормальных условиях - бесцветная жидкость, которая замерзает при 5,5 °С и кипит при 80 °С. Он имеет характерный приятный запах, но, как указывалось выше, сильно токсичен. Бензол не смешивается с водой и в системе бензол вода образует верхний из двух слоев. Однако он растворяется в неполярных органических растворителях и сам является хорошим растворителем других органических соединений.

Химические свойства

Хотя бензол вступает в определенные реакции присоединения (см. ниже), он не проявляет в них типичной для алкенов реакционной способности. Например, он не обесцвечивает бромную воду или раствор -ионов. Кроме того, бензол не

вступает в реакции присоединения с сильными кислотами, например с соляной или серной кислотой.

Вместе с тем бензол принимает участие в целом ряде реакций электрофильного замещения. Продуктами реакций этого типа являются ароматические соединения, поскольку в этих реакциях сохраняется делокализованная -электронная система бензола. Общий механизм замещения атома водорода на бензольном кольце каким-либо электрофилом описан в разд. 17.3. Примерами электрофильного замещения бензола являются его нитрование, галогенирование, сульфирование и реакции Фриделя-Крафтса.

Нитрование. Бензол можно нитровать (вводить в него группу ), обрабатывая его смесью концентрированных азотной и серной кислот:

Нитробензол

Условия проведения этой реакции и ее механизм описаны в разд. 17.3.

Нитробензол бледно-желтая жидкость с характерным миндальным запахом. При нитровании бензола кроме нитробензола образуются еще кристаллы 1,3-динитробензола, который является продуктом следующей реакции:

Галогенирование. Если смешать бензол в темноте с хлором или бромом, не произойдет никакой ракции. Однако в присутствии катализаторов, обладающих свойствами кислот Льюиса, в таких смесях протекают реакции электрофильного замещения. Типичными катализаторами этих реакций являются бромид железа (III) и хлорид алюминия. Действие этих катализаторов заключается в том, что они создают поляризацию в молекулах галогенов, которые затем образуют комплекс с катализатором:

хотя прямых доказательств того, что при этом образуются свободные ионы не существует. Механизм бромирования бензола с помощью бромида железа (III) в роли переносчика ионов можно представить следующим образом:

Сульфирование. Бензол можно сульфировать (замещать в нем атом водорода на сульфогруппу) путем кипячения с обратным холодильником в течение нескольких часов его смеси с концентрированной серной кислотой. Вместо этого бензол можно осторожно нагревать в смеси с дымящей серной кислотой. Дымящая серная кислота содержит триоксид серы. Механизм этой реакции можно представить схемой

Реакции Фриделя-Крафтса. Реакциями Фриделя-Крафтса первоначально называли реакции конденсации между ароматическими соединениями и алкилгалогенидами в присутствии катализатора-безводного хлорида алюминия.

В реакциях конденсации две молекулы реагентов (или одного реагента) соединяются между собой, образуя молекулу нового соединения, при этом от них отщепляется (элиминирует) молекула какого-либо простого соединения, например воды или хлороводорода.

В настоящее время реакцией Фриделя-Крафтса называют любое электрофильное замещение ароматического соединения, в котором роль электрофила играет какой-либо карбкатион или сильно поляризованный комплекс с положительно заряженным атомом углерода. Электрофильным агентом, как правило, служит алкилгалогенид или хлорид какой-либо карбоновой кислоты, хотя точно так же им может быть, например, алкен либо спирт. В качестве катализатора этих реакций обычно используется безводный хлорид алюминия. Реакции Фриделя-Крафтса принято подразделять на два типа: алкилирование и ацилирование.

Алкилирование. В реакциях Фриделя-Крафтса этого типа происходит замещение одного или нескольких атомов водорода в бензольном кольце на алкильные группы. Например, при осторожном нагревании смеси бензола с хлорометаном в присутствии безводного хлорида алюминия образуется метилбензол. Хлорометан играет в этой реакции роль электрофильного агента. Он поляризуется хлоридом алюминия таким же образом, как это происходит с молекулами галогенов:

Механизм рассматриваемой реакции может быть представлен следующим образом:

Следует обратить внимание на то, что в этой реакции конденсации между бензолом и хлорометаном происходит отщепление молекулы хлороводорода. Отметим также, что реальное существование метального карбкатиона в виде свободного иона сомнительно.

Алкилирование бензола хлорометаном в присутствии катализатора - безводного хлорида алюминия не завершается образованием метилбензола. В этой реакции происходит дальнейшее алкилирование бензольного кольца, приводящее к образованию 1,2-диметилбензола:

Ацилирование. В реакциях Фриделя-Крафтса этого типа происходит замещение атома водорода в бензольном кольце на ацильную группу, в результате чего образуется ароматический кетон.

Ацильная группа имеет общую формулу

Систематическое название ацильного соединения образуется путем замены суффикса и окончания -овая в названии соответствующей карбоновой кислоты, производным которой является данное ацилъное соединение, на суффикс -(о) ил. Например

Ацилирование бензола проводится с помощью хлорида или ангидрида какой-либо карбоновой кислоты в присутствии катализатора-безводного хлорида алюминия. Например

Эта реакция представляет собой конденсацию, в которой происходит отщепление молекулы хлороводорода. Отметим также, что название «фенил» часто используется для обозначения бензольного кольца в соединениях, где бензол не является главной группой:

Реакции присоединения. Хотя для бензола наиболее характерны реакции электрофильного замещения, он вступает также в некоторые реакции присоединения. С одной из них мы уже познакомились. Речь идет о гидрировании бензола (см. разд. 5.3). При пропускании смеси бензола с водородом над поверхностью тонкоизмельченного никелевого катализатора при температуре 150-160 °С происходит целая последовательность реакций, которая завершается образованием циклогексана. Суммарное стехиометрическое уравнение этой реакции можно представить следующим образом:

Под действием ультрафиолетового излучения или прямого солнечного света бензол вступает также в реакцию присоединения с хлором. Эта реакция осуществляется по сложному радикальному механизму. Ее окончательным продуктом является 1,2,3,4,5,6-гексахлороциклогексан:

Аналогичная реакция протекает между бензолом и бромом под действием ультрафиолетового излучения или солнечного света.

Окисление. Бензол и бензольное кольцо в других ароматических соединениях, вообще говоря, устойчивы к окислению даже такими сильными окислителями, как кислый или щелочный раствор перманганата калия. Однако бензол и другие ароматические соединения сгорают в воздухе или в кислороде с образованием очень дымного пламени, что характерно для углеводородов с высоким относительным содержанием углерода.


Цель и задачи урока:

– систематизировать знания учащихся о строении молекулы бензола, о способах его получения;

– сформировать представление о физических и химических свойствах бензола, научить составлять уравнения химических реакций, характерных для бензола;

– продолжить формирование умений учащихся работать с видеоматериалами и мультимедийными презентациями.

Формы работы: фронтальная, индивидуальная.

Оборудование: компьютер, мультимедийный проектор, таблицы “Бензол”

Ход урока

I. Организационный момент.

Учитель: Тема, цели, и задачи урока.

II. Активизация знаний учащихся.

  1. Фронтальный опрос
. (Слайд 3).
  • Ароматические углеводороды – АРЕНЫ
  • Дайте определение ароматическим углеводородам.
  • Почему их называют ароматическими?
  • Типичным представителем ароматических углеводородов является...?
  • С чьими именами связано происхождение бензола?
  • Какова молекулярная формула бензола?
  • Сколько структурных формул бензола?
  • Тип гибридизации?
  • Какие связи в молекуле бензола и скольких?
  • Важнейшие источники получения ароматических углеводородов?
  • Другие методы получения?
  • Назовите гамологов бензола.
  1. Строение молекулы бензола
  2. (сообщение ученика). (Слайд 4).
  3. Самостоятельная работа учащихся
  4. (на 5-7 минут). (Слайд 5).
  • заполните пропуски в определении ароматических углеводородов;
  • напишите формулы заданных веществ;
  • закончите урванения реакций получения ароматических углеводородов.

III. Изучение нового материала.

1. Физические свойства бензола. (Слайд 6).

Бензол – бесцветная, летучая, огнеопасная жидкость с неприятным запахом. Он легче воды (=0,88 г/см3) и с ней не смешивается, но растворим в органических растворителях, и сам хорошо растворяет многие вещества. Бензол кипит при 80,1 С, при охлаждении легко застывает в белую кристаллическую массу. Бензол и его пары ядовиты. Систематическое вдыхание его паров вызывает анемию и лейкемию.

– Видеоматериал (физические свойства бензола).

2. Химические свойства бензола.

1) Химические свойства бензола определяется строением его молекулы.

2) Ароматическая -система обладает повышенной устойчивостью.

3) Поэтому хотя бензол является непредельным углеводородом, он проявляет свойства, характерные для предельных (склонность к реакциям замещения, устойчивость к действию окислителей).

Реакции замещения.

Реакции присоединения (Слайд 9).

При определенных условиях бензол может вступать и в реакции присоединения. В этих реакциях разрушается ароматическая система, поэтому для их протекания требуется жесткие условия.

Реакции окисления. (Слайд 10).

а) отношение бензола к бромной воде и к перманганату калия (видеоматериал)

б) горение бензола

2C 6 H 6 + 15O 2 –> 2CO 2 + 6H 2 O

IV. Закрепление.

(Слайд 11).
  1. Бензол реагирует с каждым веществом набора:

а) Br 2 , O 2 , KMnO 4

б) H 2 O, HNO 3 , CI 2

в) CI 2 , O 2 , HNO 3

г) HCI, Br 2 , H 2

Напишите уравнения реакций бензола с веществами этого набора, укажите условия их протекания.

V. Домашнее задание.

Определите вещества Х, Y, Z в схеме превращений:

Литература:

  1. Рудзитис Г.Е., Фельдман Ф.Г. Органическая химия: Учебник для 10 классов общеобразовательных учреждений. – 8-е изд. – М.: Просвещение, 2002.
  2. Новошинский И.И., Новошинская Н.С. Органическая химия. 11 кл.: Учебник для общеобразовательных учреждений. – М.: Издательство “Образование”, 2005.

ОПРЕДЕЛЕНИЕ

Бензол (циклогексатриен – 1,3,5) – органическое вещество, простейший представитель ряда ароматических углеводородов.

Формула – С 6 Н 6 (структурная формула – рис. 1). Молекулярная масса – 78, 11.

Рис. 1. Структурные и пространственная формулы бензола.

Все шесть атомов углерода в молекуле бензола находятся в sp 2 гибридном состоянии. Каждый атом углерода образует 3σ-связи с двумя другими атомами углерода и одним атомом водорода, лежащие в одной плоскости. Шесть атомов углерода образуют правильный шестиугольник (σ-скелет молекулы бензола). Каждый атом углерода имеет одну негибридизованную р-орбиталь, на которой находится один электрон. Шесть р-электронов образуют единое π-электронное облако (ароматическую систему), которое изображают кружочком внутри шестичленного цикла. Углеводородный радикал, полученный от бензола носит название C 6 H 5 – — фенил (Ph-).

Химические свойства бензола

Для бензола характерны реакции замещения, протекающие по электрофильному механизму:

— галогенирование (бензол взаимодействует с хлором и бромом в присутствии катализаторов – безводных AlCl 3 , FeCl 3 , AlBr 3)

C 6 H 6 + Cl 2 = C 6 H 5 -Cl + HCl;

— нитрование (бензол легко реагирует с нитрующей смесью – смесь концентрированных азотной и серной кислот)

— алкилирование алкенами

C 6 H 6 + CH 2 = CH-CH 3 → C 6 H 5 -CH(CH 3) 2 ;

Реакции присоединения к бензолу приводят к разрушению ароматической системы и протекают только в жестких условиях:

— гидрирование (реакция протекает при нагревании, катализатор – Pt)

— присоединение хлора (протекает под действием УФ-излучения с образованием твердого продукта – гексахлорциклогексана (гексахлорана) – C 6 H 6 Cl 6)

Как и любое органическое соединение бензол вступает в реакцию горения с образованием в качестве продуктов реакции углекислого газа и воды (горит коптящим пламенем):

2C 6 H 6 +15O 2 → 12CO 2 + 6H 2 O.

Физические свойства бензола

Бензол – жидкость без цвета, но обладающая специфическим резким запахом. Образует с водой азеотропную смесь, хорошо смешивается с эфирами, бензином и различными органическими растворителями. Температура кипения – 80,1С, плавления – 5,5С. Токсичен, канцероген (т.е. способствует развитию онкологических заболеваний).

Получение и применение бензола

Основные способы получения бензола:

— дегидроциклизация гексана (катализаторы – Pt, Cr 3 O 2)

CH 3 –(CH 2) 4 -CH 3 → С 6 Н 6 + 4H 2 ;

— дегидрирование циклогексана (реакция протекает при нагревании, катализатор – Pt)

С 6 Н 12 → С 6 Н 6 + 4H 2 ;

— тримеризация ацетилена (реакция протекает при нагревании до 600С, катализатор – активированный уголь)

3HC≡CH → C 6 H 6 .

Бензол служит сырьем для производства гомологов (этилбензола, кумола), циклогексана, нитробензола, хлорбензола и др. веществ. Ранее бензол использовали в качестве присадки к бензину для повышения его октанового числа, однако, сейчас, в связи с его высокой токсичностью содержание бензола в топливе строго нормируется. Иногда бензол используют в качестве растворителя.

Примеры решения задач

ПРИМЕР 1

Задание Запишите уравнения, с помощью которых можно осуществить следующие превращения: CH 4 → C 2 H 2 → C 6 H 6 → C 6 H 5 Cl.
Решение Для получения ацетилена из метана используют следующую реакцию:

2CH 4 → C 2 H 2 + 3Н 2 (t = 1400C).

Получение бензола из ацетилена возможно по реакции тримеризации ацетилена, протекающей при нагревании (t = 600C) и в присутствии активированного угля:

3C 2 H 2 → C 6 H 6 .

Реакция хлорирования бензола с получением в качестве продукта хлорбензола осуществляется в присутствии хлорида железа (III):

C 6 H 6 + Cl 2 → C 6 H 5 Cl + HCl.

ПРИМЕР 2

Задание К 39 г бензола в присутствии хлорида железа (III) добавили 1 моль бромной воды. Какое количество вещества и сколько граммов каких продуктов при этом получилось?
Решение Запишем уравнение реакции бромирования бензола в присутствии хлорида железа (III):

C 6 H 6 + Br 2 → C 6 H 5 Br + HBr.

Продуктами реакции являются бромбензол и бромоводород. Молярная масса бензола, рассчитанная с использованием таблицы химических элементов Д.И. Менделеева – 78 г/моль. Найдем количество вещества бензола:

n(C 6 H 6) = m(C 6 H 6) / M(C 6 H 6);

n(C 6 H 6) = 39 / 78 = 0,5 моль.

По условию задачи бензол вступил в реакцию с 1 моль брома. Следовательно, бензол находится в недостатке и дальнейшие расчеты будем производить по бензолу. Согласно уравнению реакции n(C 6 H 6): n(C 6 H 5 Br) : n(HBr) = 1:1:1, следовательно n(C 6 H 6) = n(C 6 H 5 Br) = : n(HBr) = 0,5 моль. Тогда, массы бромбензола и бромоводорода будут равны:

m(C 6 H 5 Br) = n(C 6 H 5 Br)×M(C 6 H 5 Br);

m(HBr) = n(HBr)×M(HBr).

Молярные массы бромбензола и бромоводорода, рассчитанные с использованием таблицы химических элементов Д.И. Менделеева – 157 и 81 г/моль, соответственно.

m(C 6 H 5 Br) = 0,5×157 = 78,5 г;

m(HBr) = 0,5×81 = 40,5 г.

Ответ Продуктами реакции являются бромбензол и бромоводород. Массы бромбензола и бромоводорода – 78,5 и 40,5 г, соответственно.
Заголовок

Простой углеводород. Относится к ароматическим углеводородам, классу органических веществ.

Вещество представляет собой прозрачную жидкость, не имеет цвета, обладает сладковатым характерным запахом. Бензол относят к ненасыщенным углеводородам. Знаменитая формула бензольного кольца была предложена нобелевским лауреатом в области химии – Лайнусом Полингом. Именно он предложил изображать бензол в виде шестигранника с окружностью внутри. Это изображение дает понимание об отсутствии двойных связей и наличии единого электронного облака, в которое охвачены все 6 атомов углерода.

Формула

Получение бензола

Естественные источники получения

Естественный источник для получения бензола – это каменный уголь. Процесс коксования каменного угля был открыт Майклом Фарадеем в далеком 1825 году. Он изучал светильный газ, который использовали в фонарях уличного освещения, смог выделить и описать бензол. Сейчас этим способом из каменноугольной смолы бензол практически не получают. Существует множество других более продуктивных способов его получения.

Искусственные источники получения

  • Искусственный каталитический риформинг бензина. Для получения используются бензиновые нефтяные фракции. В этом процессе образуется большое количество толуола. Спрос на рынке для толуола не очень большой, поэтому из него также далее получают бензол. Из тяжелых фракций нефти пиролизом через процесс деалкилирования смеси толуола, ксилола получают бензол.
  • Получение методом Реппе. До 1948 года по методу Бертло получали бензол, пропуская ацетилен над активированным углем при температуре 400°C. Выход бензола был большой, но получалась многокомпонентная смесь веществ, с трудом поддающаяся очистке. В 1948 году Реппе заменил активированный уголь никелем. В результате на выходе получался бензол. Процесс называется тримеризацией ацетелена – три молекулы ацетилена превращаются в одну бензола:

3С 2 Н 2 → С 6 H 6 .

Свойства бензола

Физические свойства

При горении выделяется большое количество копоти, так как углеводород ненасыщенный (ему не хватает 8 атомов водорода, чтобы отвечать стандартной формуле предельных углеводородов). При низких температурах бензол становится белой кристаллической массой.

Химические свойства

Бензол вступает в реакции замещения в присутствии катализаторов – обычно это соли Al(3+) или Fe(3+):

  • Галогенирование – качественная реакция на бензол с Br 2:

C 6 H 6 + Br 2 = C 6 H 5 Br + HBr.

  • Нитрование – взаимодействие с азотной кислотой. В органической химии этот процесс сопровождается отщеплением OH-группы:

C 6 H 6 + HO-NO 2 → C 6 H 5 NO 2 + H 2 O.

  • Каталитическое алкилирование приводит к получению гомологов бензола – алкилбензолов:

С 6 H 6 + С 2 H 5 Cl → C 6 H 5 C 2 H 5 + HCl.

Гомологи бензола, содержащие радикал, реагирует не так как сам бензол. Реакции идут по-другому и часто на свету:

  • галогенирование С 6 H 5 -CH 3 + Br 2 (на свету) = С 6 H 5 -CH 2 Br + HBr;
  • нитрование – С 6 H 5 -CH 3 + 3HNO 3 → C 6 H 2 CH 3 (NO 2) 3 .

Реакции окисления бензола идут очень сложно и не характерны для этого вещества. Окисление характерно для гомологов. Вот, например, реакция получения бензойной кислоты:

С 6 H 5 CH 3 + [O] → C 6 H 5 COOH.

Процесс горения вещества происходит по стандартной схеме для всех органических веществ:

C n H 2n-6 + (3n-3)\2 O 2 → nCO 2 + (n-3)H 2 O.

Реакции гидрирования. Реакция проходит сложно, требуются катализаторы, давление, температура. В реакциях бензола с водородом получается циклогексан:

С 6 H 6 + 3H 2 → C 6 H 12 .

А в реакциях с алкилбензолом – метилциклогексан, где один атом водорода замещается на радикальную группу -CH 3:

С 6 H 5 CH 3 + 3H 2 → C 6 H 11 -CH 3 .

Применение бензола

Бензол в чистом виде практически не используется. Его вырабатывают для производства других важных соединений, таких как, например, этилбензол, из которого получают стирол и полистирол.

Львиную долю бензола пускают на производства фенола, который необходим в производстве капрона, красителей, пестицидов, лекарств. Знаменитое лекарство аспирин невозможно получать без участия фенола.

Циклогексан из бензола необходим для производства пластмасс и искусственных волокон, нитробензол идет на выработку анилина, который используют для производства каучуков, красителей и гербицидов.