Частота колебаний пружинного маятника определяется выражением. Свободные колебания. Пружинный маятник. Примеры задач с решением

Определение

Пружинным маятником называют систему, которая состоит из упругой пружины, к которой прикреплен груз.

Допустим, что масса груза равна $m$, коэффициент упругости пружины $k$. Масса пружины в таком маятнике обычно не учитывается. Если рассматривать вертикальные движения груза (рис.1), то он движется под действием силы тяжести и силы упругости, если систему вывели из состояния равновесия и предоставили самой себе.

Уравнения колебаний пружинного маятника

Пружинный маятник, совершающий свободные колебания является примером гармонического осциллятора. Допустим, что маятник совершает колебания вдоль оси X. Если колебания малые, выполняется закон Гука, то уравнение движения груза имеет вид:

\[\ddot{x}+{\omega }^2_0x=0\left(1\right),\]

где ${щu}^2_0=\frac{k}{m}$ - циклическая частота колебаний пружинного маятника. Решением уравнения (1) является функция:

где ${\omega }_0=\sqrt{\frac{k}{m}}>0$- циклическая частота колебаний маятника, $A$ - амплитуда колебаний; ${(\omega }_0t+\varphi)$ - фаза колебаний; $\varphi $ и ${\varphi }_1$ - начальные фазы колебаний.

В экспоненциальном виде колебания пружинного маятника можно записать как:

Формулы периода и частоты колебаний пружинного маятника

Если в упругих колебаниях выполняется закон Гука, то период колебаний пружинного маятника вычисляют при помощи формулы:

Так как частота колебаний ($\nu $) - величина обратная к периоду, то:

\[\nu =\frac{1}{T}=\frac{1}{2\pi }\sqrt{\frac{k}{m}}\left(5\right).\]

Формулы амплитуды и начальной фазы пружинного маятника

Зная уравнение колебаний пружинного маятника (1 или 2) и начальные условия можно полностью описать гармонические колебания пружинного маятника. Начальные условия определяют амплитуда ($A$) и начальная фаза колебаний ($\varphi $).

Амплитуду можно найти как:

начальная фаза при этом:

где $v_0$ - скорость груза при $t=0\ c$, когда координата груза равна $x_0$.

Энергия колебаний пружинного маятника

При одномерном движении пружинного маятника между двумя точками его движения существует только один путь, следовательно, выполняется условие потенциальности силы (любую силу можно считать потенциальной, если она зависит только от координат). Так как силы, действующие на пружинный маятник потенциальны, то можно говорить о потенциальной энергии.

Пусть пружинный маятник совершает колебания в горизонтальной плоскости (рис.2). За ноль потенциальной энергии маятника примем положение его равновесия, где поместим начало координат. Силы трения не учитываем. Используя формулу, связывающую потенциальную силу и потенциальную энергию для одномерного случая:

учитывая, что для пружинного маятника $F=-kx$,

тогда потенциальная энергия ($E_p$) пружинного маятника равна:

Закон сохранения энергии для пружинного маятника запишем как:

\[\frac{m{\dot{x}}^2}{2}+\frac{m{{\omega }_0}^2x^2}{2}=const\ \left(10\right),\]

где $\dot{x}=v$ - скорость движения груза; $E_k=\frac{m{\dot{x}}^2}{2}$ - кинетическая энергия маятника.

Из формулы (10) можно сделать следующие выводы:

  • Максимальная кинетическая энергия маятника равна его максимальной потенциальной энергии.
  • Средняя кинетическая энергия по времени осциллятора равна его средней по времени потенциальной энергии.

Примеры задач с решением

Пример 1

Задание. Маленький шарик, массой $m=0,36$ кг прикреплен к горизонтальной пружине, коэффициент упругости которой равен $k=1600\ \frac{Н}{м}$. Каково было начальное смещение шарика от положения равновесия ($x_0$), если он при колебаниях проходит его со скоростью $v=1\ \frac{м}{с}$?

Решение. Сделаем рисунок.

По закону сохранения механической энергии (так как считаем, что сил трения нет), запишем:

где $E_{pmax}$ - потенциальная энергия шарика при его максимальном смещении от положения равновесия; $E_{kmax\ }$ - кинетическая энергия шарика, в момент прохождения положения равновесия.

Потенциальная энергия равна:

В соответствии с (1.1) приравняем правые части (1.2) и (1.3), имеем:

\[\frac{mv^2}{2}=\frac{k{x_0}^2}{2}\left(1.4\right).\]

Из (1.4) выразим искомую величину:

Вычислим начальное (максимальное) смещение груза от положения равновесия:

Ответ. $x_0=1,5$ мм

Пример 2

Задание. Пружинный маятник совершает колебания по закону: $x=A{\cos \left(\omega t\right),\ \ }\ $где $A$ и $\omega $ - постоянные величины. Когда возвращающая сила в первый раз достигает величины $F_0,$ потенциальная энергия груза равна $E_{p0}$. В какой момент времени это произойдет?

Решение. Возвращающей силой для пружинного маятника является сила упругости, равная:

Потенциальную энергию колебаний груза найдем как:

В момент времени, который следует найти $F=F_0$; $E_p=E_{p0}$, значит:

\[\frac{E_{p0}}{F_0}=-\frac{A}{2}{\cos \left(\omega t\right)\ }\to t=\frac{1}{\omega }\ arc{\cos \left(-\frac{2E_{p0}}{AF_0}\right)\ }.\]

Ответ. $t=\frac{1}{\omega }\ arc{\cos \left(-\frac{2E_{p0}}{AF_0}\right)\ }$

Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия.

Для того, чтобы свободные колебания совершались по гармоническому закону, необходимо, чтобы сила, стремящаяся возвратить тело в положение равновесия, была пропорциональна смещению тела из положения равновесия и направлена в сторону, противоположную смещению (см. §2.1):

Силы любой другой физической природы, удовлетворяющие этому условию, называются квазиупругими .

Таким образом, груз некоторой массы m , прикрепленный к пружине жесткости k , второй конец которой закреплен неподвижно (рис. 2.2.1), составляют систему, способную совершать в отсутствие трения свободные гармонические колебания. Груз на пружине называют линейным гармоническим осциллятором .

Круговая частота ω 0 свободных колебаний груза на пружине находится из второго закона Ньютона :

При горизонтальном расположении системы пружина-груз сила тяжести, приложенная к грузу, компенсируется силой реакции опоры. Если же груз подвешен на пружине, то сила тяжести направлена по линии движения груза. В положении равновесия пружина растянута на величину x 0 , равную

Поэтому второй закон Ньютона для груза на пружине может быть записан в виде

Уравнение (*) называется уравнением свободных колебаний . Следует обратить внимание на то, что физические свойства колебательной системы определяют только собственную частоту колебаний ω 0 или период T . Такие параметры процесса колебаний, как амплитуда x m и начальная фаза φ 0 , определяются способом, с помощью которого система была выведена из состояния равновесия в начальный момент времени.


Если, например, груз был смещен из положения равновесия на расстояние Δl и затем в момент времени t = 0 отпущен без начальной скорости, то x m = Δl , φ 0 = 0.

Если же грузу, находившемуся в положении равновесия, с помощью резкого толчка была сообщена начальная скорость ± υ 0 , то ,

Таким образом, амплитуда x m свободных колебаний и его начальная фаза φ 0 определяются начальными условиями .

Существует много разновидностей механических колебательных систем, в которых используются силы упругих деформаций. На рис. 2.2.2 показан угловой аналог линейного гармонического осциллятора. Горизонтально расположенный диск висит на упругой нити, закрепленной в его центре масс. При повороте диска на угол θ возникает момент сил M упр упругой деформации кручения:

где I = I C - момент инерции диска относительно оси, проходящий через центр масс, ε - угловое ускорение.

По аналогии с грузом на пружине можно получить:


Свободные колебания. Математический маятник

Математическим маятником называют тело небольших размеров, подвешенное на тонкой нерастяжимой нити, масса которой пренебрежимо мала по сравнению с массой тела. В положении равновесия, когда маятник висит по отвесу, сила тяжести уравновешивается силой натяжения нити . При отклонении маятника из положения равновесия на некоторый угол φ появляется касательная составляющая силы тяжести F τ = -mg sin φ (рис. 2.3.1). Знак «минус» в этой формуле означает, что касательная составляющая направлена в сторону, противоположную отклонению маятника.

Если обозначить через x линейное смещение маятника от положения равновесия по дуге окружности радиуса l , то его угловое смещение будет равно φ = x / l . Второй закон Ньютона, записанный для проекций векторов ускорения и силы на направление касательной, дает:

Это соотношение показывает, что математический маятник представляет собой сложную нелинейную систему, так как сила, стремящаяся вернуть маятник в положение равновесия, пропорциональна не смещению x , а

Только в случае малых колебаний , когда приближенно можно заменить на математический маятник является гармоническим осциллятором, т. е. системой, способной совершать гармонические колебания. Практически такое приближение справедливо для углов порядка 15-20°; при этом величина отличается от не более чем на 2 %. Колебания маятника при больших амплитудах не являются гармоническими.

Для малых колебаний математического маятника второй закон Ньютона записывается в виде

Эта формула выражает собственную частоту малых колебаний математического маятника .

Следовательно,

Любое тело, насаженное на горизонтальную ось вращения, способно совершать в поле тяготения свободные колебания и, следовательно, также является маятником. Такой маятник принято называть физическим (рис. 2.3.2). Он отличается от математического только распределением масс. В положении устойчивого равновесия центр масс C физического маятника находится ниже оси вращения О на вертикали, проходящей через ось. При отклонении маятника на угол φ возникает момент силы тяжести, стремящийся возвратить маятник в положение равновесия:

и второй закон Ньютона для физического маятника принимает вид (см. §1.23)

Здесь ω 0 - собственная частота малых колебаний физического маятника .

Следовательно,

Поэтому уравнение, выражающее второй закон Ньютона для физического маятника, можно записать в виде

Окончательно для круговой частоты ω 0 свободных колебаний физического маятника получается выражение:


Превращения энергии при свободных механических колебаниях

При свободных механических колебаниях кинетическая и потенциальная энергии периодически изменяются. При максимальном отклонении тела от положения равновесия его скорость, а следовательно, и кинетическая энергия обращаются в нуль. В этом положении потенциальная энергия колеблющегося тела достигает максимального значения. Для груза на пружине потенциальная энергия - это энергия упругих деформаций пружины. Для математического маятника - это энергия в поле тяготения Земли.

Когда тело при своем движении проходит через положение равновесия, его скорость максимальна. Тело проскакивает положение равновесия по закону инерции. В этот момент оно обладает максимальной кинетической и минимальной потенциальной энергией. Увеличение кинетической энергии происходит за счет уменьшения потенциальной энергии. При дальнейшем движении начинает увеличиваться потенциальная энергия за счет убыли кинетической энергии и т. д.

Таким образом, при гармонических колебаниях происходит периодическое превращение кинетической энергии в потенциальную и наоборот.

Если в колебательной системе отсутствует трение, то полная механическая энергия при свободных колебаниях остается неизменной.

Для груза на пружине (см. §2.2):

В реальных условиях любая колебательная система находится под воздействием сил трения (сопротивления). При этом часть механической энергии превращается во внутреннюю энергию теплового движения атомов и молекул, и колебания становятся затухающими (рис. 2.4.2).

Скорость затухания колебаний зависит от величины сил трения. Интервал времени τ, в течении которого амплитуда колебаний уменьшается в e ≈ 2,7 раз, называется временем затухания .

Частота свободных колебаний зависит от скорости затухания колебаний. При возрастании сил трения собственная частота уменьшается. Однако, изменение собственной частоты становится заметным лишь при достаточно больших силах трения, когда собственные колебания быстро затухают.

Важной характеристикой колебательной системы, совершающей свободные затухающие колебания, является добротность Q . Этот параметр определяется как число N полных колебаний, совершаемых системой за время затухания τ, умноженное на π:

Таким образом, добротность характеризует относительную убыль энергии колебательной системы из-за наличия трения на интервале времени, равном одному периоду колебаний.

Вынужденные колебания. Резонанс. Автоколебания

Колебания, совершающиеся под воздействием внешней периодической силы, называются вынужденными .

Внешняя сила совершает положительную работу и обеспечивает приток энергии к колебательной системе. Она не дает колебаниям затухать, несмотря на действие сил трения.

Периодическая внешняя сила может изменяться во времени по различным законам. Особый интерес представляет случай, когда внешняя сила, изменяющаяся по гармоническому закону с частотой ω, воздействует на колебательную систему, способную совершать собственные колебания на некоторой частоте ω 0 .

Если свободные колебания происходят на частоте ω 0 , которая определяется параметрами системы, то установившиеся вынужденные колебания всегда происходят на частоте ω внешней силы .

После начала воздействия внешней силы на колебательную систему необходимо некоторое время Δt для установления вынужденных колебаний. Время установления по порядку величины равно времени затухания τ свободных колебаний в колебательной системе.

В начальный момент в колебательной системе возбуждаются оба процесса - вынужденные колебания на частоте ω и свободные колебания на собственной частоте ω 0 . Но свободные колебания затухают из-за неизбежного наличия сил трения. Поэтому через некоторое время в колебательной системе остаются только стационарные колебания на частоте ω внешней вынуждающей силы.

Рассмотрим в качестве примера вынужденные колебания тела на пружине (рис. 2.5.1). Внешняя сила приложена к свободному концу пружины. Она заставляет свободный (левый на рис. 2.5.1) конец пружины перемещаться по закону

Если левый конец пружины смещен на расстояние y , а правый - на расстояние x от их первоначального положения, когда пружина была недеформирована, то удлинение пружины Δl равно:

В этом уравнении сила, действующая на тело, представлена в виде двух слагаемых. Первое слагаемое в правой части - это упругая сила, стремящаяся возвратить тело в положение равновесия (x = 0). Второе слагаемое - внешнее периодическое воздействие на тело. Это слагаемое и называют вынуждающей силой .

Уравнению, выражающему второй закон Ньютона для тела на пружине при наличии внешнего периодического воздействия, можно придать строгую математическую форму, если учесть связь между ускорением тела и его координатой: Тогда запишется в виде

Уравнение (**) не учитывает действия сил трения. В отличие от уравнения свободных колебаний (*) (см. §2.2) уравнение вынужденных колебаний (**) содержит две частоты - частоту ω 0 свободных колебаний и частоту ω вынуждающей силы.

Установившиеся вынужденные колебания груза на пружине происходят на частоте внешнего воздействия по закону

x (t ) = x m cos (ωt + θ).

Амплитуда вынужденных колебаний x m и начальная фаза θ зависят от соотношения частот ω 0 и ω и от амплитуды y m внешней силы.

На очень низких частотах, когда ω << ω 0 , движение тела массой m , прикрепленного к правому концу пружины, повторяет движение левого конца пружины. При этом x (t ) = y (t ), и пружина остается практически недеформированной. Внешняя сила приложенная к левому концу пружины, работы не совершает, т. к. модуль этой силы при ω << ω 0 стремится к нулю.

Если частота ω внешней силы приближается к собственной частоте ω 0 , возникает резкое возрастание амплитуды вынужденных колебаний. Это явление называется резонансом . Зависимость амплитуды x m вынужденных колебаний от частоты ω вынуждающей силы называется резонансной характеристикой или резонансной кривой (рис. 2.5.2).

При резонансе амплитуда x m колебания груза может во много раз превосходить амплитуду y m колебаний свободного (левого) конца пружины, вызванного внешним воздействием. В отсутствие трения амплитуда вынужденных колебаний при резонансе должна неограниченно возрастать. В реальных условиях амплитуда установившихся вынужденных колебаний определяется условием: работа внешней силы в течение периода колебаний должна равняться потерям механической энергии за то же время из-за трения. Чем меньше трение (т. е. чем выше добротность Q колебательной системы), тем больше амплитуда вынужденных колебаний при резонансе.

У колебательных систем с не очень высокой добротностью (< 10) резонансная частота несколько смещается в сторону низких частот. Это хорошо заметно на рис. 2.5.2.

Явление резонанса может явиться причиной разрушения мостов, зданий и других сооружений, если собственные частоты их колебаний совпадут с частотой периодически действующей силы, возникшей, например, из-за вращения несбалансированного мотора.

Вынужденные колебания - это незатухающие колебания. Неизбежные потери энергии на трение компенсируются подводом энергии от внешнего источника периодически действующей силы. Существуют системы, в которых незатухающие колебания возникают не за счет периодического внешнего воздействия, а в результате имеющейся у таких систем способности самой регулировать поступление энергии от постоянного источника. Такие системы называются автоколебательными , а процесс незатухающих колебаний в таких системах - автоколебаниями . В автоколебательной системе можно выделить три характерных элемента - колебательная система, источник энергии и устройство обратной связи между колебательной системой и источником. В качестве колебательной системы может быть использована любая механическая система, способная совершать собственные затухающие колебания (например, маятник настенных часов).

Источником энергии может служить энергия деформация пружины или потенциальная энергия груза в поле тяжести. Устройство обратной связи представляет собой некоторый механизм, с помощью которого автоколебательная система регулирует поступление энергии от источника. На рис. 2.5.3 изображена схема взаимодействия различных элементов автоколебательной системы.

Примером механической автоколебательной системы может служить часовой механизм с анкерным ходом (рис. 2.5.4). Ходовое колесо с косыми зубьями жестко скреплено с зубчатым барабаном, через который перекинута цепочка с гирей. На верхнем конце маятника закреплен анкер (якорек) с двумя пластинками из твердого материала, изогнутыми по дуге окружности с центром на оси маятника. В ручных часах гиря заменяется пружиной, а маятник - балансиром - маховичком, скрепленным со спиральной пружиной. Балансир совершает крутильные колебания вокруг своей оси. Колебательной системой в часах является маятник или балансир.

Источником энергии - поднятая вверх гиря или заведенная пружина. Устройством, с помощью которого осуществляется обратная связь, является анкер, позволяющий ходовому колесу повернуться на один зубец за один полупериод. Обратная связь осуществляется взаимодействием анкера с ходовым колесом. При каждом колебании маятника зубец ходового колеса толкает анкерную вилку в направлении движения маятника, передавая ему некоторую порцию энергии, которая компенсирует потери энергии на трение. Таким образом, потенциальная энергия гири (или закрученной пружины) постепенно, отдельными порциями передается маятнику.

Механические автоколебательные системы широко распространены в окружающей нас жизни и в технике. Автоколебания совершают паровые машины, двигатели внутреннего сгорания, электрические звонки, струны смычковых музыкальных инструментов, воздушные столбы в трубах духовых инструментов, голосовые связки при разговоре или пении и т. д.

Рисунок 2.5.4. Часовой механизм с маятником.

), один конец которой жёстко закреплён, а на втором находится груз массы m.

Когда на массивное тело действует упругая сила, возвращающая его в положение равновесия, оно совершает колебания около этого положения.Такое тело называют пружинным маятником. Колебания возникают под действием внешней силы. Колебания, которые продолжаются после того, как внешняя сила перестала действовать, называют свободными. Колебания, обусловленные действием внешней силы, называют вынужденными. При этом сама сила называется вынуждающей.

В простейшем случае пружинный маятник представляет собой движущееся по горизонтальной плоскости твердое тело, прикрепленное пружиной к стене.

Второй закон Ньютона для такой системы при условии отсутствия внешних сил и сил трения имеет вид:

Если на систему оказывают влияние внешние силы, то уравнение колебаний перепишется так:

, где f(x) - это равнодействующая внешних сил соотнесённая к единице массы груза.

В случае наличия затухания , пропорционального скорости колебаний с коэффициентом c :

См. также

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Пружинный маятник" в других словарях:

    У этого термина существуют и другие значения, см. Маятник (значения). Колебания маятника: стрелками показаны векторы скорости (v) и ускорения (a) … Википедия

    Маятник - устройство, которое, колеблясь, упорядочивает движение механизма часов. Пружинный маятник. Регулирующая деталь часов, состоящая из маятника и его пружины. До изобретения маятниковой пружины, часы приводились в движение одним маятником.… … Словарь часов

    МАЯТНИК - (1) математический (или простой) (рис. 6) тело небольших размеров, свободно подвешенное к неподвижной точке на нерастяжимой нити (или стержне), масса которой пренебрежимо мала по сравнению с массой тела, совершающего гармонические (см.)… … Большая политехническая энциклопедия

    Твёрдое тело, совершающее под действием прилож. сил колебания ок. неподвижной точки или оси. Математическим М. наз. материальная точка, подвешенная к неподвижной точке на невесомой нерастяжимой нити (или стержне) и совершающая под действием силы… … Большой энциклопедический политехнический словарь

    Часы с пружинным маятником - пружинный маятник регулирующая часть часов, также используется в часах средних и маленьких размеров (переносные часы, настольные, и т.д.) … Словарь часов - маленькая спиральная пружина, прикрепленная концами к маятнику и его молоточку. Пружинный маятник регулирует часы, точность которых частично зависит от качества маятниковой пружины … Словарь часов

    ГОСТ Р 52334-2005: Гравиразведка. Термины и определения - Терминология ГОСТ Р 52334 2005: Гравиразведка. Термины и определения оригинал документа: (гравиметрическая) съемка Гравиметрическая съемка, проводимая на суше. Определения термина из разных документов: (гравиметрическая) съемка 95… … Словарь-справочник терминов нормативно-технической документации

где k – коэффициент упругости тела, m - масса груза

Математическим маятником называется система, состоящая из материальной точки массой m, подвешенной на невесомой нерастяжимой нити, совершающей колебания под действием силы тяжести (рис.5.13,б).

Период колебаний математического маятника

где l – длина математического маятника, g – ускорение свободного падения.

Физическим маятником называется твердое тело, которое совершает колебания под действием силы тяжести вокруг горизонтальной оси подвеса, не проходящей через центр масс тела (рис.5.13,в).

,

где J – момент инерции колеблющегося тела относительно оси колебаний; d – расстояние центра масс маятника от оси колебаний; - приведенная длина физического маятника.

При сложении двух одинаково направленных гармонических колебаний одинакового периода получается гармоническое колебание того же периода с амплитудой

Результирующая начальная фаза , получаемая при сложении двух колебаний, :

, (5.50)

где A 1 и A 2 – амплитуды слагаемых колебаний, φ 1 и φ 2 – их начальные фазы.

При сложении двух взаимно перпендикулярных колебаний одинакового периода уравнение траектории результирующего движения имеет вид:

Если на материальную точку, кроме упругой силы действует сила трения, то колебания будут затухающими, и уравнение такого колебания будет иметь вид

, (5.52)

где называется коэффициентом затухания (r – коэффициент сопротивления).

Называется отношение двух амплитуд, отстоящих друг от друга по времени, равным периоду


Среди различных электрических явлений особое место занимают электромагнитные колебания, при которых электрические величины периодически меняются и сопровождаются взаимными превращениями электрического и магнитного полей. Для возбуждения и поддержания электромагнитных колебаний используется колебательный контур – цепь, состоящая из включенных последовательно катушки индуктивности L, конденсатора емкостью C и резистора сопротивлением R (рис.5.14).

Период T электромагнитных колебаний в колебательном контуре

. (5.54)

Если сопротивление колебательного контура мало, т.е. <<1/LC, то период колебаний колебательного контура определяется формулой Томсона

Если сопротивление контура R не равно нулю, то колебания будут затухающими . При этом разность потенциалов на обкладках конденсатора меняется со временем по закону

, (5.56)

где δ – коэффициент затухания, U 0 – амплитудное значение напряжения.

Коэффициент затухания колебаний в колебательном контуре

где L – индуктивность контура, R – сопротивление.

Логарифмическим декрементом затухания называется отношение двух амплитуд, отстоящих друг от друга по времени, равное периоду


Резонансом называется явление резкого возрастания амплитуды вынужденных колебаний при приближении частоты вынуждающей силы ω к частоте, равной или близкой собственной частоте ω 0 колебательной системы (рис.5.15.).

Условие получения резонанса :

. (5.59)

Промежуток времени, в течение которого амплитуда затухающих колебаний уменьшится в e раз, называется временем релаксации

Для характеристики затухания колебательных контуров часто пользуются величиной, называемой добротностью контура. Добротностью контура Q называется число полных колебаний N, умноженное на число π, по истечению которых амплитуда уменьшается в e раз

. (5.61)

Если коэффициент затухания равен нулю, то колебания будут незатухающими, напряжение будет меняться по закону

. (5.62)

В случае постоянного тока отношение напряжения к силе тока называют сопротивлением проводника. Подобно этому при переменном токе отношение амплитуды активной составляющей напряжения U а к амплитуде тока i 0 называется активным сопротивлением цепи X

В рассматриваемой цепи оно равно сопротивлению постоянного тока. Активное сопротивление всегда приводит к выделению тепла.

Отношение

. (5.64)

называетсяреактивным сопротивлением цепи .

Наличие реактивного сопротивления в цепи не сопровождается выделением тепла.

Полным сопротивлением называется геометрическая сумма активного и реактивного сопротивления

, (5.65)

Емкостным сопротивлением цепи переменного тока X c называется соотношение

Индуктивное сопротивление

Закон Ома для переменного тока записывается в виде

где I эф и U эф – эффективные значения силы тока и напряжения , связанные с их амплитудными значениями I 0 и U 0 соотношениями

Если цепь содержит активное сопротивление R, емкость C и индуктивность L, соединенные последовательно, тоcдвиг фаз между напряжением и силой тока определяется формулой

. (5.70)

Если активное сопротивление R и индуктивность включены параллельно в цепь переменного тока, то полное сопротивление цепи определяется формулой

, (5.71)

и сдвиг фаз между напряжением и током определяется следующим соотношением

, (5.72)

где υ – частота колебаний.

Мощность переменного тока определяется следующим соотношением

. (5.73)

Длина волны связана с периодом следующим соотношением

где c=3·10 8 м/с – скорость распространения звука.


Примеры решения задач

Задача 5.1. По отрезку прямого провода длиной l = 80 см течет ток I = 50 А. Определить магнитную индукцию B поля, создаваемого этим током, в точке А, равноудаленной от концов отрезка провода и находящейся на расстоянии r 0 = 30 см от его середины.

где dB – магнитная индукция, создаваемая элементом провода длиной dl с током I в точке, определяемой радиус-вектором r; μ 0 – магнитная постоянная, μ – магнитная проницаемость среды, в которой находится провод (в нашем случае, т.к. средой является воздух, μ = 1).

Векторы от различных элементов тока сонаправлены (рис.), поэтому выражение (1) можно переписать в скалярной форме:

где α – угол между радиус-вектором и элементом тока dl .

Подставляя выражение (4) в (3), получим

Заметим, что при симметричном расположении точки А относительно отрезка провода cos α 2 = - cos α 1 .

С учетом этого формула (7) примет вид

Подставляя формулу (9) в (8), получим


Задача 5.2. Два параллельных бесконечно длинных провода D и C, по которым текут токи в одном направлении электрические токи силой I = 60 А, расположены на расстоянии d = 10 см друг от друга. Определить магнитную индукцию поля, создаваемого проводниками с током в точке А (рис.), отстоящей от оси одного проводника на расстоянии r 1 = 5 см, от другого – r 2 = 12 см.

Модуль вектора магнитной индукции найдем по теореме косинусов:

где α – угол между векторами B 1 и B 2 .

Магнитные индукции B 1 и B 2 выражаются соответственно через силу тока I и расстояния r 1 и r 2 от проводов до точки А:

Из рисунка видно, что α = Ð DAC (как углы с соответственно перпендикулярными сторонами).

Из треугольника DAC по теореме косинусов, найдем cosα

Проверим, дает ли правая часть полученного равенства единицу индукции магнитного поля (Тл)

Вычисления:

Ответ: B = 3,08·10 -4 Тл.

Задача 5.3. По тонкому проводящему кольцу радиусом R = 10 см течет ток I = 80 А. Найти магнитную индукцию в точке А, равноудаленной от всех точек кольца на расстояние r = 20 см.

определяемой радиус-вектором .

где интегрирование ведется по всем элементам dl кольца.

Разложим вектор dB на две составляющие dB ┴ , перпендикулярную плоскости кольца, и dB || , параллельную плоскости кольца, т.е.

где и (поскольку dl перпендикулярен r и, следовательно, sinα = 1).

С учетом этого формула (3) примет вид

Проверим, дает ли правая часть равенства (5) единицу магнитной индукции

Вычисления:

Тл.

Ответ: B = 6,28·10 -5 Тл.

Задача 5.4. Длинный провод с током I = 50 А изогнут под углом α = 2π/3. Определить магнитную индукцию в точке А (рис. к задаче 5.4., а). Расстояние d = 5 см.

Вектор сонаправлен с вектором и определяется правилом правого винта. На рисунке 5.4.,б это направление отмечено крестиком в кружочке (т.е. перпендикулярно плоскости чертежа, от нас).

Вычисления:

Тл.

Ответ: B = 3,46·10 -5 Тл.


Задача 5.5. Два бесконечно длинных провода скрещены под прямым углом (рис. к задаче 5.5.,а ). По проводам текут токи I 1 = 80 А и I 2 = 60 А. Расстояние d между проводами равно 10 см. Определить магнитную индукцию B в точке А, одинаково удаленной от обоих проводов.
Дано: I 1 = 80 А I 2 = 60 А d = 10 см = 0,1 м Решение: В соответствии с принципом суперпозиции магнитных полей магнитная индукция в точке А будет равна геометрической сумме магнитных индукций и , создаваемых токами I 1 и I 2 .
Найти: B - ?

Из рисунка следует, что векторы B 1 и B 2 взаимно перпендикулярны (их направления находятся по правилу буравчика и изображены в двух проекциях на рис. к задаче 5.5.,б).

Напряженность магнитного поля, согласно (5.8), созданного бесконечно длинным прямолинейным проводником,

где μ – относительная магнитная проницаемость среды (в нашем случае μ = 1).

Подставляя формулу (2) в (3), найдем магнитные индукций B 1 и B 2 , создаваемых токами I 1 и I 2

Подставляя формулу (4) в (1), получим

Проверим, дает ли правая часть полученного равенства единицу магнитной индукции (Тл):

Вычисления:

Тл.

Ответ: B = 4·10 -6 Тл.

Задача 5.6. Бесконечно длинный провод изогнут так, как это изображено на рисунке к задаче 5.6,а . Радиус R дуги окружности равен 10 см. Определить магнитную индукцию поля, создаваемого в точке О током I = 80 A, текущим по этому проводу.

В нашем случае провод можно разбить на три части (рис. к задаче 5.6, б): два прямолинейных провода (1 и 3), одним концом, уходящие в бесконечность, и дугу полуокружности (2) радиуса R.

Учитывая, что векторы направлены в соответствии с правилом буравчика перпендикулярно плоскости чертежа от нас, то геометрическое суммирование можно заменить алгебраическим:

В нашем случае магнитное поле в точке О создается лишь половиной такого кругового тока, поэтому

В нашем случае r 0 = R, α 1 = π/2 (cos α 1 = 0), α 2 → π (cos α 2 = -1).

Проверим, дает ли правая часть полученного равенства единицу магнитной индукции (Тл):

Вычисления:

Тл.

Ответ: B = 3,31·10 -4 Тл.

Задача 5.7. По двум параллельным прямым проводам длиной l = 2,5 см каждый, находящимся на расстоянии d = 20 см друг от друга, текут одинаковые токи I = 1 кА. Вычислить силу взаимодействия токов.

Ток I 1 создает в месте расположения второго провода (с током I 2) магнитное поле. Проведем линию магнитной индукции (пунктир на рис.) через второй провод и по касательной к ней – вектор магнитной индукции B 1 .

Рисунок к задаче 5.7

Модуль магнитной индукции B 1 определяется соотношением

Так как вектор dl перпендикулярен вектору B 1 , то sin(dl ,B) = 1 и тогда

Силу F взаимодействия проводов с током найдем интегрированием:

Проверим, дает ли правая часть полученного равенства единицу силы (Н):

Вычисление:

Н.

Ответ: F = 2,5 Н.

Так как сила Лоренца перпендикулярна вектору скорости , то она сообщит частице (протону) нормальное ускорение a n .

Согласно второму закону Ньютона,

, (1)

где m – масса протона.

На рисунке совмещена траектория протона с плоскостью чертежа и дано (произвольно) направление вектора . Силу Лоренца направим перпендикулярно вектору к центру окружности (векторы a n и F л сонаправлены). Используя правило левой руки, определим направление магнитных силовых линий (направление вектора ).

Пружинный маятник - это колебательная система, состоящая из материальной точки массой т и пружины. Рассмотрим горизонтальный пружинный маятник (рис. 1, а). Он представляет собой массивное тело, просверленное посередине и надетое на горизонтальный стержень, вдоль которого оно может скользить без трения (идеальная колебательная система). Стержень закреплен между двумя вертикальными опорами.

К телу одним концом прикреплена невесомая пружина. Другой ее конец закреплен на опоре, которая в простейшем случае находится в покое относительно инерциальной системы отсчета, в которой происходят колебания маятника. В начале пружина не деформирована, и тело находится в положении равновесия С. Если, растянув или сжав пружину, вывести тело из положения равновесия, то со стороны деформированной пружины на него начнет действовать сила упругости, всегда направленная к положению равновесия.

Пусть мы сжали пружину, переместив тело в положение А, и отпустили . Под действием силы упругости оно станет двигаться ускоренно. При этом в положении А на тело действует максимальная сила упругости, так как здесь абсолютное удлинение x m пружины наибольшее. Следовательно, в этом положении ускорение максимальное. При движении тела к положению равновесия абсолютное удлинение пружины уменьшается, а следовательно, уменьшается ускорение, сообщаемое силой упругости. Но так как ускорение при данном движении сонаправлено со скоростью, то скорость маятника увеличивается и в положении равновесия она будет максимальна.

Достигнув положения равновесия С, тело не остановится (хотя в этом положении пружина не деформирована, и сила упругости равна нулю), а обладая скоростью, будет по инерции двигаться дальше, растягивая пружину. Возникающая при этом сила упругости направлена теперь против движения тела и тормозит его. В точке D скорость тела окажется равной нулю, а ускорение максимально, тело на мгновение остановится, после чего под действием силы упругости начнет двигаться в обратную сторону, к положению равновесия. Вновь пройдя его по инерции, тело, сжимая пружину и замедляя движение, дойдет до точки А (так как трение отсутствует), т.е. совершит полное колебание. После этого движение тела будет повторяться в описанной последовательности. Итак, причинами свободных колебаний пружинного маятника являются действие силы упругости, возникающей при деформации пружины, и инертность тела.

По закону Гука F x = -kx. По второму закону Ньютона F x = ma x . Следовательно, ma x = -kx. Отсюда

Динамическое уравнение движения пружинного маятника.

Видим, что ускорение прямопропорционально смешению и противоположно ему направлено. Сравнивая полученное уравнение с уравнением гармонических колебаний , видим, что пружинный маятник совершает гармонические колебания с циклической частотой